6533b862fe1ef96bd12c6c21

RESEARCH PRODUCT

A universal tensor network algorithm for any infinite lattice

Saeed S. JahromiSaeed S. JahromiRoman OrusRoman OrusRoman Orus

subject

Quantum phase transitionPhysicsStrongly Correlated Electrons (cond-mat.str-el)Heisenberg modelFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSquare latticeCondensed Matter - Strongly Correlated ElectronsLattice (order)0103 physical sciencesIsing modelHexagonal latticeCondensed Matter::Strongly Correlated ElectronsTensorStatistical physics010306 general physics0210 nano-technologyPotts model

description

We present a general graph-based Projected Entangled-Pair State (gPEPS) algorithm to approximate ground states of nearest-neighbor local Hamiltonians on any lattice or graph of infinite size. By introducing the structural-matrix which codifies the details of tensor networks on any graphs in any dimension $d$, we are able to produce a code that can be essentially launched to simulate any lattice. We further introduce an optimized algorithm to compute simple tensor updates as well as expectation values and correlators with a mean-field-like effective environments. Though not being variational, this strategy allows to cope with PEPS of very large bond dimension (e.g., $D=100$), and produces remarkably accurate results in the thermodynamic limit in many situations, and specially when the correlation length is small and the connectivity of the lattice is large. We prove the validity of our approach by benchmarking the algorithm against known results for several models, i.e., the antiferromagnetic Heisenberg model on a chain, star and cubic lattices, the hardcore Bose-Hubbard model on square lattice, the ferromagnetic Heisenberg model in a field on the pyrochlore lattice, as well as the $3$-state quantum Potts model in field on the kagome lattice and the spin-$1$ bilinear-biquadratic Heisenberg model on the triangular lattice. We further demonstrate the performance of gPEPS by studying the quantum phase transition of the $2d$ quantum Ising model in transverse magnetic field on the square lattice, and the phase diagram of the Kitaev-Heisenberg model on the hyperhoneycomb lattice. Our results are in excellent agreement with previous studies.

https://dx.doi.org/10.48550/arxiv.1808.00680