6533b862fe1ef96bd12c6e8d
RESEARCH PRODUCT
Entanglement robustness via spatial deformation of identical particle wave functions
Giuseppe CompagnoFarzam NosratiRosario Lo FrancoPatrizia LivreriRoberto MorandottiMatteo Piccolinisubject
ScienceQC1-999Entanglement protection Indistinguishable particles Open quantum systemsFOS: Physical sciencesGeneral Physics and AstronomyQuantum entanglementAstrophysics01 natural sciencesNoise (electronics)Settore ING-INF/01 - ElettronicaArticleSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasWave–particle dualityRobustness (computer science)0103 physical sciencesStatistical physics010306 general physicsAmplitude damping channelQuantumPhysicsQuantum Physicsentanglement protectionPhysicsQindistinguishable particlesopen quantum systemsQuantum PhysicsQB460-466QubitQuantum Physics (quant-ph)Communication channeldescription
We address the problem of entanglement protection against surrounding noise by a procedure suitably exploiting spatial indistinguishability of identical subsystems. To this purpose, we take two initially separated and entangled identical qubits interacting with two independent noisy environments. Three typical models of environments are considered: amplitude damping channel, phase damping channel and depolarizing channel. After the interaction, we deform the wave functions of the two qubits to make them spatially overlap before performing spatially localized operations and classical communication (sLOCC) and eventually computing the entanglement of the resulting state. This way, we show that spatial indistinguishability of identical qubits can be utilized within the sLOCC operational framework to partially recover the quantum correlations spoiled by the environment. A general behavior emerges: the higher the spatial indistinguishability achieved via deformation, the larger the amount of recovered entanglement.
year | journal | country | edition | language |
---|---|---|---|---|
2021-06-01 |