6533b86efe1ef96bd12cb631
RESEARCH PRODUCT
First InGaN/GaN thin Film LED using SiCOI engineered substrate
P. BoveJ. DorsazP. GiletJ.-f. CarlinBruce FaureMauro MoscaFabrice LetertreS. BressotH. Larhechesubject
Materials scienceSiliconbusiness.industrychemistry.chemical_elementChemical vapor depositionGallium nitrideCondensed Matter PhysicsSettore ING-INF/01 - ElettronicaLight emitting diodeslaw.inventionchemistrylawOptoelectronicsQuantum efficiencyInGaN/GaN LEDs SiCOI technologyMetalorganic vapour phase epitaxyThin filmbusinessSilicon oxideLight-emitting diodeMetallic bondingefficiency LEEdescription
InGaN / GaN multiple quantum well (MQW) light emitting diodes (LEDs) were deposited by metal-organic chemical vapor deposition (MOCVD) onto SiCOI engineered substrates. SiCOI substrates are composed of SiC thin film transferred on a silicon substrate through silicon oxide layer by the Smart Cut™ technology. LEDs structures grown on SiCOI were characterized, then transferred onto Si substrates via a metallic bonding process and SiCOI substrates were removed. Three different metallic stacks were used for metallic bonding, including mirror and barrier diffusion. Vertical thin film LED obtained were characterized and showed a 2 to 3 times increase of external quantum efficiency. These results demonstrate the potential of SiCOI engineered substrates as an alternative to laser lift off for thin film LED fabrication. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
year | journal | country | edition | language |
---|---|---|---|---|
2006-06-01 |