6533b86efe1ef96bd12cc849

RESEARCH PRODUCT

Diffractive optics for quasi-direct space-to-time pulse shaping.

Jesús LancisRafael GisbertPedro AndrésGladys Mínguez-vegaOmel Mendoza-yero

subject

Femtosecond pulse shapingMasking (art)LightDiffractive lensesPhysics::OpticsDiffraction efficiencyOpticsScattering RadiationComputer SimulationChromatic scalePhysicsPulse shapingKinoformbusiness.industryFísicaOptical DevicesSignal Processing Computer-AssistedEquipment DesignModels TheoreticalPulse shapingAtomic and Molecular Physics and OpticsEquipment Failure AnalysisRefractometryFemtosecondComputer-Aided DesignFocus (optics)business

description

The strong chromatic behavior associated with a conventional diffractive lens is fully exploited to propose a novel optical device for pulse shaping in the femtosecond regime. This device consists of two optical elements: a spatially patterned circularly symmetric mask and a kinoform diffractive lens, which are facing each other. The system performs a mapping between the spatial position of the masking function expressed in the squared radial coordinate and the temporal position in the output waveform. This space-to-time conversion occurs at the chromatic focus of the diffractive lens, and makes it possible to tailor the output central wavelength along the axial location of the output point. Inspection of the validity of our device is performed by means of computer simulations involving the generation of femtosecond optical packets

10.1364/oe.16.016993https://pubmed.ncbi.nlm.nih.gov/18852808