6533b86ffe1ef96bd12cdcad
RESEARCH PRODUCT
Event generation and statistical sampling for physics with deep generative models and a density information buffer
Caspar Van LeeuwenWieske De SwartSydney OttenSydney OttenRoberto Ruiz De AustriMelissa Van BeekveldSascha CaronLuc HendriksRob VerheyenDamian Podareanusubject
Test data generationScienceMonte Carlo methodGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesCharacterization and analytical techniquesGeneral Biochemistry Genetics and Molecular BiologyArticleHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesInformation theory and computationHigh Energy Physics010306 general physicsMultidisciplinary010308 nuclear & particles physicsEvent (computing)QStatisticsData ScienceSampling (statistics)General ChemistryDensity estimationAutoencoderHigh Energy Physics - PhenomenologyPhysics - Data Analysis Statistics and ProbabilityExperimental High Energy PhysicsAnomaly detectionAlgorithmImportance samplingData Analysis Statistics and Probability (physics.data-an)description
Simulating nature and in particular processes in particle physics require expensive computations and sometimes would take much longer than scientists can afford. Here, we explore ways to a solution for this problem by investigating recent advances in generative modeling and present a study for the generation of events from a physical process with deep generative models. The simulation of physical processes requires not only the production of physical events, but to also ensure that these events occur with the correct frequencies. We investigate the feasibility of learning the event generation and the frequency of occurrence with several generative machine learning models to produce events like Monte Carlo generators. We study three processes: a simple two-body decay, the processes e+e− → Z → l+l− and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pp\to t\bar{t}$$\end{document}pp→tt¯ including the decay of the top quarks and a simulation of the detector response. By buffering density information of encoded Monte Carlo events given the encoder of a Variational Autoencoder we are able to construct a prior for the sampling of new events from the decoder that yields distributions that are in very good agreement with real Monte Carlo events and are generated several orders of magnitude faster. Applications of this work include generic density estimation and sampling, targeted event generation via a principal component analysis of encoded ground truth data, anomaly detection and more efficient importance sampling, e.g., for the phase space integration of matrix elements in quantum field theories.
year | journal | country | edition | language |
---|---|---|---|---|
2021-05-20 |