6533b86ffe1ef96bd12cdff2

RESEARCH PRODUCT

Multi-marginal entropy-transport with repulsive cost

Anna KausamoTapio RajalaAugusto Gerolin

subject

osittaisdifferentiaaliyhtälötPure mathematicsApplied Mathematics010102 general mathematicsMathematicsofComputing_NUMERICALANALYSISA domainFOS: Physical sciencesMathematical Physics (math-ph)matemaattinen optimointi01 natural sciences010101 applied mathematicsMetric spaceMathematics - Analysis of PDEsOptimization and Control (math.OC)FOS: MathematicsEntropy (information theory)0101 mathematicsMathematics - Optimization and ControlMathematical PhysicsAnalysisAnalysis of PDEs (math.AP)Mathematics

description

In this paper we study theoretical properties of the entropy-transport functional with repulsive cost functions. We provide sufficient conditions for the existence of a minimizer in a class of metric spaces and prove the $\Gamma$-convergence of the entropy-transport functional to a multi-marginal optimal transport problem with a repulsive cost. We also prove the entropy-regularized version of the Kantorovich duality.

10.1007/s00526-020-01735-3http://dx.doi.org/10.1007/s00526-020-01735-3