6533b86ffe1ef96bd12ce73c

RESEARCH PRODUCT

Convolutional neural networks in skin cancer detection using spatial and spectral domain

Samuli RahkonenNoora NeittaanmäkiIlkka PölönenLeevi Annala

subject

ta113Training setskin cancerArtificial neural networkComputer sciencebusiness.industryspektrikuvausHyperspectral imagingspectral imagingSpectral domainPattern recognitionneuroverkotmedicine.diseaseneural networksWorld wideConvolutional neural networkihosyöpämedicineArtificial intelligenceSkin cancerEarly phasebusinessta217

description

Skin cancers are world wide deathly health problem, where significant life and cost savings could be achieved if detection of cancer can be done in early phase. Hypespectral imaging is prominent tool for non-invasive screening. In this study we compare how use of both spectral and spatial domain increase classification performance of convolutional neural networks. We compare five different neural network architectures for real patient data. Our models gain same or slightly better positive predictive value as clinicians. Towards more general and reliable model more data is needed and collection of training data should be systematic. peerReviewed

http://urn.fi/URN:NBN:fi:jyu-201904042072