6533b870fe1ef96bd12cfba0
RESEARCH PRODUCT
Polymer brushes with reversibly tunable grafting density.
Alexey A. PolotskyAlexander M. SkvortsovLeonid I. KlushinAnna S. IvanovaFriederike Schmidsubject
Materials scienceFOS: Physical sciencesGeneral Physics and AstronomySubstrate (electronics)Condensed Matter - Soft Condensed Matter010402 general chemistry01 natural scienceslaw.inventionchemistry.chemical_compoundAdsorptionlawPhysics - Chemical Physics0103 physical sciencesPhysical and Theoretical ChemistryChemical Physics (physics.chem-ph)chemistry.chemical_classificationRange (particle radiation)010304 chemical physicsBrushPolymerGrafting0104 chemical sciencesMonomerchemistryChemical physicsSoft Condensed Matter (cond-mat.soft)Layer (electronics)description
We propose a novel class of responsive polymer brushes, where the effective grafting density can be controlled by external stimuli. This is achieved by using end-grafted polymer chains that have an affinity to the substrate. For sufficiently strong surface interactions, a fraction of chains condenses into a near-surface layer, while the remaining ones form the outer brush. The dense layer and the more tenuous outer brush can be seen as coexisting microphases. The effective grafting density of the outer brush is controlled by the adsorption strength and can be changed reversibly and in a controlled way as a response to changes in environmental parameters. The effect is demonstrated by numerical SCF calculations and analyzed by scaling arguments. Since the thickness of the denser layer is about a few monomer sizes, its capacity to form a microphase is limited by the product of the brush chain length and the grafting density. We explore the range of chain lengths and grafting densities where the effect is most pronounced. In this range, the SCF studies suggest that individual chains inside the brush show large rapid fluctuations between two states that are separated by only a small free energy barrier. The behavior of the brush as a whole, however, does not reflect these large fluctuations, and the effective grafting density varies smoothly as a function of the control parameters.
year | journal | country | edition | language |
---|---|---|---|---|
2021-02-21 | The Journal of chemical physics |