6533b871fe1ef96bd12d1a58

RESEARCH PRODUCT

Connection between Absorption Properties and Conformational Changes in Deinococcus radiodurans Phytochrome

Heikki TakalaHeikki TakalaVesa P. HytönenHeli LehtivuoriJanne A. IhalainenHenrik Hammaren

subject

biologyPhytochromeProtein ConformationElutionProtein domainHistidine kinaseta1182Deinococcus radioduransSDG 10 - Reduced Inequalitiesbiology.organism_classificationBiochemistryTetrapyrroleProtein Structure Tertiarychemistry.chemical_compoundDark stateBacterial ProteinsBiochemistrychemistry/dk/atira/pure/sustainabledevelopmentgoals/reduced_inequalitiesBiophysicsMoleculeSpectrophotometry UltravioletDeinococcusPhytochrome

description

Phytochromes consist of several protein domains and a linear tetrapyrrole molecule, which interact as a red-light-sensing system. In this study, size-exclusion chromatography and light-scattering techniques are combined with UV-vis spectroscopy to investigate light-induced changes in dimeric Deinococcus radiodurans bacterial phytochrome (DrBphP) and its subdomains. The photosensory unit (DrCBD-PHY) shows an unusually stable Pfr state with minimal dark reversion, whereas the histidine kinase (HK) domain facilitates dark reversion to the resting state. Size-exclusion chromatography reveals that all phytochrome fragments remain as dimers in the illuminated state and dark state. Still, the elution profiles of all phytochrome fragments differ between the illuminated and dark states. The differences are observed reliably only when the whole UV-vis spectrum is characterized along the elution profile and show more Pfr-state characteristics at later elution volumes in DrBphP and DrCBD-PHY fragments. This implies that the PHY domain has an important role in amplifying and relaying light-induced conformational changes to the HK domain. In the illuminated state, the HK domain appears partially unfolded and prone to form oligomers. The oligomerization of DrBphP can be diminished by converting the molecule back to the resting Pr state by using far-red light.

https://doi.org/10.1021/bi501180s