0000000000064463

AUTHOR

Heikki Takala

0000-0003-2518-8583

showing 33 related works from this author

Ubiquitous Structural Signaling in Bacterial Phytochromes

2015

The phytochrome family of light-switchable proteins has long been studied by biochemical, spectroscopic and crystallographic means, while a direct probe for global conformational signal propagation has been lacking. Using solution X-ray scattering, we find that the photosensory cores of several bacterial phytochromes undergo similar large-scale structural changes upon red-light excitation. The data establish that phytochromes with ordinary and inverted photocycles share a structural signaling mechanism and that a particular conserved histidine, previously proposed to be involved in signal propagation, in fact tunes photoresponse.

0303 health sciencesBacteriaPhytochromeProtein dynamicsta1182BiologyX-ray scattering010402 general chemistryBioinformaticsphytochromes01 natural sciences0104 chemical sciences/dk/atira/pure/sustainabledevelopmentgoals/clean_water_and_sanitation03 medical and health sciencesprotein dynamicsBiophysicsGeneral Materials SciencePhytochromePhysical and Theoretical ChemistrySignal transductionSDG 6 - Clean Water and SanitationHistidinesignal transduction030304 developmental biologyJournal of Physical Chemistry Letters
researchProduct

The structural effect between the output module and chromophore-binding domain is a two-way street via the hairpin extension.

2022

AbstractSignal transduction typically starts with either ligand binding or cofactor activation, eventually affecting biological activities in the cell. In red light-sensing phytochromes, isomerization of the bilin chromophore results in regulation of the activity of diverse output modules. During this process, several structural elements and chemical events influence signal propagation. In our study, we have studied the full-length bacteriophytochrome from Deinococcus radiodurans as well as a previously generated optogenetic tool where the native histidine kinase output module has been replaced with an adenylate cyclase. We show that the composition of the output module influences the stabi…

Binding SitesbiotieteetLightProtein ConformationfotobiologiaCrystallography X-Rayred lightsolutBacterial Proteinsbiologinen aktiivisuussignaalitproteiinitPhytochromeDeinococcusPhysical and Theoretical ChemistryvalopunavaloPhotochemicalphotobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
researchProduct

Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling

2021

Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP a…

Histidine KinaseLightPROTEINSScienceAgrobacteriumHISTIDINE KINASESKinasesMolecular Dynamics SimulationPhotoreceptors MicrobialTRANSDUCTIONArticleCYANOBACTERIAL PHYTOCHROME CPH1ACTIVATIONBacterial ProteinsProtein DomainsCRYSTAL-STRUCTUREPHOSPHORYLATIONX-ray crystallographyBacterial structural biologyQREARRANGEMENTSphotoreceptorsAGROBACTERIUM-TUMEFACIENSPhosphoric Monoester HydrolasesINSIGHTSbacterial phytochromesEnzyme mechanismsbacteriaDeinococcus3111 BiomedicineSignal Transduction
researchProduct

Red Light Optogenetics in Neuroscience

2022

Optogenetics, a field concentrating on controlling cellular functions by means of light-activated proteins, has shown tremendous potential in neuroscience. It possesses superior spatiotemporal resolution compared to the surgical, electrical, and pharmacological methods traditionally used in studying brain function. A multitude of optogenetic tools for neuroscience have been created that, for example, enable the control of action potential generation via light-activated ion channels. Other optogenetic proteins have been used in the brain, for example, to control long-term potentiation or to ablate specific subtypes of neurons. In in vivo applications, however, the majority of optogenetic too…

neuroscienceopsinbrainNeurosciences. Biological psychiatry. Neuropsychiatryoptogeneticsnear-infraredneuronRC321-571Frontiers in Cellular Neuroscience
researchProduct

The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser

2019

Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The chan…

DYNAMICSQH301-705.5ScienceEXCITED-STATEDIFFRACTION010402 general chemistryPhotosynthesisphytochromes01 natural sciencesCofactor03 medical and health scienceschemistry.chemical_compoundDeinococcus radioduransPROTON-TRANSFERREVEALSSFXCRYSTAL-STRUCTUREBiology (General)Bilin030304 developmental biologyISOMERIZATION0303 health sciencesbiologyPhytochromeD-RINGChemistryCRYSTALLOGRAPHYinitial photoresponsQRChromophore0104 chemical sciencesPhotoexcitationFemtosecondbiology.proteinBiophysics1182 Biochemistry cell and molecular biologyMedicine3111 BiomedicinevalokemiaproteiinitSignal transductionröntgenkristallografia
researchProduct

Conserved histidine and tyrosine determine spectral responses through the water network in Deinococcus radiodurans phytochrome

2022

Funding Information: This work was supported by Academy of Finland grants 285461 (H.T.), 330678 (H.T., J.R.), 277194 (H.L.), and 290677 (S.M.). We acknowledge the European Synchrotron Radiation Facility (ESRF) for providing synchrotron access for crystal data collection. We thank Prof. Janne Ihalainen (University of Jyväskylä) for all the help in all aspects of the paper, Prof. Gerrit Groenhof (University of Jyväskylä) for support, and Prof. Nikolai V. Tkachenko (Tampere University) for help and facilities for time-resolved absorption spectroscopy. We also thank M.Sc. Alli Liukkonen (University of Jyväskylä) and Dr. Heikki Häkkänen (University of Jyväskylä) for the assistance in laboratory …

fytokromitphytochrome structureProtein ConformationPhytochrome structureSpectral responsesspektroskopiafotobiologiabakteeritBacterial ProteinsHistidinePhysical and Theoretical ChemistryBinding Sites221 Nanotechnologyspectral responsesWaterBiliverdin protonationsäteilyWater networkkidetiedewater networkTyrosine1182 Biochemistry cell and molecular biologyPhytochromeDeinococcusproteiinitvalokemiabiliverdin protonationvalo
researchProduct

Tips and turns of bacteriophytochrome photoactivation

2020

Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module,…

Models MolecularProtein Conformation116 Chemical sciencesHISTIDINE KINASESSIGNAL-TRANSDUCTIONfotobiologiabacteriophytochrome photoactivation010402 general chemistry01 natural sciencesbakteeritPhytochrome B03 medical and health sciencesProtein structureBacterial ProteinsINDUCED PROTON RELEASEPHYTOCHROME-BCRYSTAL-STRUCTUREPhysical and Theoretical Chemistry030304 developmental biologyINDUCED CONFORMATIONAL-CHANGESPhysics0303 health sciencesRESONANCE RAMANMechanism (biology)AGROBACTERIUM-TUMEFACIENSPhotochemical ProcessesMolecular machine0104 chemical sciencesINFRARED FLUORESCENT PROTEINSCHROMOPHORE-BINDING DOMAINBiophysics1182 Biochemistry cell and molecular biologyvalokemiaproteiinitPhytochromeSignal TransductionPhotochemical & Photobiological Sciences
researchProduct

The Interconnecting Hairpin Extension "Arm": An Essential Allosteric Element of Phytochrome Activity

2023

In red-light sensing phytochromes, isomerization of the bilin chromophore triggers structural and dynamic changes across multiple domains, ultimately leading to control of the output module (OPM) activity. In between, a hairpin structure, "arm", extends from an interconnecting domain to the chromophore region. Here, by removing this protein segment in a bacteriophytochrome from Deinococcus radiodurans (DrBphP), we show that the arm is crucial for signal transduction. Crystallographic, spectroscopic, and biochemical data indicate that this variant maintains the properties of DrBphP in the resting state. Spectroscopic data also reveal that the armless systems maintain the ability to respond t…

phytochromesoluviestintäphotosensorallostery92-11histidine kinanasephotoreceptorthermal stabilityreseptorit (biokemia)87.1592-05structure and functionproteiinitvalokemia87.14 2000 MSCprotein structurePACSsignal transduction
researchProduct

The hairpin extension controls solvent access to the chromophore binding pocket in a bacterial phytochrome: a UV-vis absorption spectroscopy study.

2021

AbstractSolvent access to the protein interior plays an important role in the function of many proteins. Phytochromes contain a specific structural feature, a hairpin extension that appears to relay structural information from the chromophore to the rest of the protein. The extension interacts with amino acids near the chromophore, and hence shields the chromophore from the surrounding solvent. We envision that the detachment of the extension from the protein surface allows solvent exchange reactions in the vicinity of the chromophore. This can facilitate for example, proton transfer processes between solvent and the protein interior. To test this hypothesis, the kinetics of the protonation…

Models MolecularProtein ConformationProtonation010402 general chemistryPhotochemistry01 natural sciencespH jump03 medical and health scienceschemistry.chemical_compoundPhytochrome ADeprotonationBacterial ProteinsPhotostationary statePhysical and Theoretical Chemistrychromophore protein systems030304 developmental biology0303 health sciencesBiliverdinBinding SitesPhytochromeProtein dynamicsBiliverdineconformational substatesChromophoreHydrogen-Ion Concentrationsolvent gating0104 chemical sciencesKineticschemistryprotein dynamicsSolventsSpectrophotometry UltravioletproteiinitvalokemiaDeinococcusPhytochromeProtonsPhotochemicalphotobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
researchProduct

UV-Vis Spectroscopy Reveals a Correlation Between Y263 and BV Protonation States in Bacteriophytochromes

2019

Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large‐scale secondary and tertiary changes which follow small‐scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore‐binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemi…

Deinococcusvalokemiaproteiinitphytochromesbakteerit
researchProduct

Structural photoactivation of a full-length bacterial phytochrome

2016

Time-resolved x-ray solution scattering reveals the conformational signaling mechanism of a bacterial phytochrome.

Models Molecular0301 basic medicineProtein ConformationAstrophysics::High Energy Astrophysical Phenomena116 Chemical sciencesPhotoreceptors MicrobialphytochromesQuantitative Biology::Cell BehaviorStructure-Activity Relationship03 medical and health sciencesProtein structureBacterial ProteinsStructural BiologyDeinococcus radioduransBotanyResearch Articles219 Environmental biotechnologyMultidisciplinarybiologyPhytochromeHistidine kinaseta1182SciAdv r-articlesDeinococcus radioduransChromophorebiology.organism_classificationKineticsMicrosecond030104 developmental biologyStructural changephotoactivationBiophysicsPhytochromeFunction (biology)Research Article
researchProduct

Author response: The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser

2020

X-ray laserPrimary (chemistry)Materials sciencePhytochromebusiness.industryFemtosecondOptoelectronicsbusiness
researchProduct

On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome

2018

Phytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with …

0301 basic medicineModels MolecularCrystallography X-RayBiochemistrybakteeritProtein structurephotoconversionchromophore-binding domainTransferasestructural biologyCRYSTAL-STRUCTURETyrosineDEINOCOCCUS-RADIODURANSbiologyPhytochromeChemistryREARRANGEMENTSProtein Structure and FoldingDeinococcusmutagenesisBinding domainSignal TransductionMODULEPLANT PHYTOCHROMEPhenylalaninefotobiologia03 medical and health sciencesBacterial Proteinsprotein conformationcell signalingprotein structureBACTERIOPHYTOCHROMEMolecular BiologyX-ray crystallographysoluviestintäphytochromeAGP1BINDING DOMAINBinding Sitesta114030102 biochemistry & molecular biologyta1182Deinococcus radioduransCell BiologyChromophorebiology.organism_classificationphotoreceptor030104 developmental biologyStructural biologyFTIRBiophysicsTyrosineproteiinit3111 Biomedicineröntgenkristallografia
researchProduct

Fluorescence Properties of the Chromophore-Binding Domain of Bacteriophytochrome from Deinococcus radiodurans

2013

Fluorescent proteins are versatile tools for molecular imaging. In this study, we report a detailed analysis of the absorption and fluorescence properties of the chromophore-binding domain from Deinococcus radiodurans and its D207H mutant. Using single photon counting and transient absorption techniques, the average excited state lifetime of both studied systems was about 370 ps. The D207H mutation slightly changed the excited state decay profile but did not have a considerable effect on the average decay time of the system or the shape of the absorption and emission spectra of the biliverdin chromophore. We confirmed that the fluorescence properties of both samples are very similar in vivo…

Time FactorsFluorescence in the life sciencesPhotochemistrychemistry.chemical_compoundBimolecular fluorescence complementationBacterial ProteinsEscherichia coliMaterials ChemistryPhysical and Theoretical Chemistryta116BiliverdinbiologyPhytochromeBiliverdineta1182Deinococcus radioduransChromophorebiology.organism_classificationFluorescenceRecombinant ProteinsProtein Structure TertiarySurfaces Coatings and FilmschemistryMutationQuantum TheorySpectrophotometry UltravioletDeinococcusBinding domainThe Journal of Physical Chemistry B
researchProduct

UV‐Vis Spectroscopy Reveals a Correlation Between Y263 and BV Protonation States in Bacteriophytochromes

2019

Red-light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large-scale secondary and tertiary changes which follow small-scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore-binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemi…

Models Molecular0301 basic medicinePhotoisomerizationProtein ConformationStereochemistryProtonation010402 general chemistry01 natural sciencesBiochemistry03 medical and health scienceschemistry.chemical_compoundProtein structureMoleculeCloning MolecularPhysical and Theoretical ChemistryBilinchemistry.chemical_classificationBinding SitesPhytochromeSpectrum AnalysisGene Expression Regulation BacterialGeneral MedicineHydrogen-Ion ConcentrationChromophore0104 chemical sciencesAmino acid030104 developmental biologychemistryDeinococcusPhytochromePhotochemistry and Photobiology
researchProduct

Light-induced Changes in the Dimerization Interface of Bacteriophytochromes

2015

Phytochromes are dimeric photoreceptor proteins that sense red light levels in plants, fungi, and bacteria. The proteins are structurally divided into a light-sensing photosensory module consisting of PAS, GAF, and PHY domains and a signaling output module, which in bacteriophytochromes typically is a histidine kinase (HK) domain. Existing structural data suggest that two dimerization interfaces exist between the GAF and HK domains, but their functional roles remain unclear. Using mutational, biochemical, and computational analyses of the Deinococcus radiodurans phytochrome, we demonstrate that two dimerization interfaces between sister GAF and HK domains stabilize the dimer with approximat…

Histidine KinaseLightProtein ConformationMutantCrystallography X-RayBiochemistryProtein structureBacterial Proteinsx-ray scatteringcell signalingDeinococcusMolecular BiologybiologyPhytochromeHistidine kinaseMutagenesista1182Photoreceptor proteinDeinococcus radioduransCell Biologybiology.organism_classificationphotoreceptormolecular dynamicsProtein Structure TertiaryBiochemistryhigh performance liquid chromatography (HPLC)BiophysicsDeinococcusPhytochromeDimerizationProtein KinasesmutagenesisMolecular BiophysicsJournal of Biological Chemistry
researchProduct

Binding properties and stability of the Ras-association domain of Rap1-GTP interacting adapter molecule (RIAM).

2012

The Rap1-GTP interacting adapter protein (RIAM) is an important protein in Rap1-mediated integrin activation. By binding to both Rap1 GTPase and talin, RIAM recruits talin to the cell membrane, thus facilitating talin-dependent integrin activation. In this article, we studied the role of the RIAM Ras-association (RA) and pleckstrin-homology (PH) domains in the interaction with Rap1. We found that the RA domain was sufficient for GTP-dependent interaction with Rap1B, and the addition of the PH domain did not change the binding affinity. We also detected GTP-independent interaction of Rap1B with the N-terminus of RIAM. In addition, we found that the PH domain stabilized the RA domain both in …

TalinIntegrinsGTP'lcsh:MedicineGTPaseSignal transductionBiochemistryProtein structureMolecular cell biologyRIAMlcsh:Science0303 health sciencesMultidisciplinarybiologyProtein Stability030302 biochemistry & molecular biologySignal transducing adaptor proteinrap1 GTP-Binding ProteinssitoutuminenCell biologyPleckstrin homology domainRap1Research Articleendocrine systemvuorovaikutusProtein domainIntegrinSignaling in cellular processesPhosphoinositide Signal TransductionSignaling Pathways03 medical and health sciencesCell AdhesionHumansProtein InteractionsBiologyGTPase signaling030304 developmental biologyRas signalingAdaptor Proteins Signal Transducingintegriinitlcsh:RProteinsMembrane ProteinsRegulatory ProteinsProtein Structure TertiaryCytoskeletal Proteinsenzymes and coenzymes (carbohydrates)rap GTP-Binding ProteinsCell movement signalingbiology.proteinta1181lcsh:QPLoS ONE
researchProduct

Light-induced structural changes in a monomeric bacteriophytochrome

2016

International audience; Phytochromes sense red light in plants and various microorganism. Light absorption causes structural changes within the protein, which alter its biochemical activity. Bacterial phytochromes are dimeric proteins, but the functional relevance of this arrangement remains unclear. Here, we use time-resolved X-ray scattering to reveal the solution structural change of a monomeric variant of the photosensory core module of the phytochrome from Deinococcus radiodurans. The data reveal two motions, a bend and a twist of the PHY domain with respect to the chromophore-binding domains. Infrared spectroscopy shows the refolding of the PHY tongue. We conclude that a monomer of th…

0301 basic medicineAllosteric regulationInfrared spectroscopyBiological Systems010402 general chemistry01 natural sciencesARTICLES03 medical and health scienceschemistry.chemical_compoundSDG 17 - Partnerships for the Goalslcsh:QD901-999[CHIM]Chemical SciencesInstrumentationSpectroscopyRadiationPhytochromebiologyChemistryMolecular biophysicsta1182/dk/atira/pure/sustainabledevelopmentgoals/partnershipsDeinococcus radioduransBiochemical ActivityCondensed Matter Physicsbiology.organism_classification0104 chemical sciences030104 developmental biologyMonomerStructural changebacterial phytochromesBiophysicslcsh:CrystallographyStructural Dynamics
researchProduct

Red Light Optogenetics in Neuroscience

2022

Optogenetics, a field concentrating on controlling cellular functions by means of light-activated proteins, has shown tremendous potential in neuroscience. It possesses superior spatiotemporal resolution compared to the surgical, electrical, and pharmacological methods traditionally used in studying brain function. A multitude of optogenetic tools for neuroscience have been created that, for example, enable the control of action potential generation via light-activated ion channels. Other optogenetic proteins have been used in the brain, for example, to control long-term potentiation or to ablate specific subtypes of neurons. In in vivo applications, however, the majority of optogenetic too…

phytochromeoptogenetiikkabrainnear-infraredneurotieteetneuronneuroscienceopsinin vivo -menetelmäproteiinitpunainen (väri)optogeneticsaivotvalo
researchProduct

Illuminating a Phytochrome Paradigm – a Light-Activated Phosphatase in Two-Component Signaling Uncovered

2020

ABSTRACTBacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome fromDeinococcus radiodurans(DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome fromAgrobacterium fabrum(AgP1). Whereas AgP1 acts as a conventional histidine kinase, we identify DrBp…

0303 health sciencesPhytochromebiologyChemistryKinasePhosphataseHistidine kinaseDeinococcus radioduransbiology.organism_classificationCell biology03 medical and health sciencesResponse regulator0302 clinical medicineKinase activity030217 neurology & neurosurgeryHistidine030304 developmental biology
researchProduct

Site-by-site tracking of signal transduction in an azidophenylalanine-labeled bacteriophytochrome with step-scan FTIR spectroscopy

2021

Signal propagation in photosensory proteins is a complex and multidimensional event. Unraveling such mechanisms site-specifically in real time is an eligible but a challenging goal. Here, we elucidate the site-specific events in a red-light sensing phytochrome using the unnatural amino acid azidophenylalanine, vibrationally distinguishable from all other protein signals. In canonical phytochromes, signal transduction starts with isomerization of an excited bilin chromophore, initiating a multitude of processes in the photosensory unit of the protein, which eventually control the biochemical activity of the output domain, nanometers away from the chromophore. By implementing the label in pri…

Models MolecularAzidesProtein ConformationPhenylalaninespektroskopiaTongue regionGeneral Physics and Astronomyfotobiologia010402 general chemistryTracking (particle physics)01 natural sciences03 medical and health scienceschemistry.chemical_compoundBacterial ProteinsSpectroscopy Fourier Transform InfraredAmino Acid SequenceAmino AcidsPhysical and Theoretical ChemistryFourier transform infrared spectroscopyBilin030304 developmental biology0303 health sciencesBinding SitesStaining and LabelingbiologyPhytochromeChemistryDeinococcus radioduransChromophorePhotochemical Processesbiology.organism_classification0104 chemical sciencesKineticsBiophysicsPhytochromeproteiinitvalokemiaSignal transductionProtein BindingSignal TransductionPhysical Chemistry Chemical Physics
researchProduct

Signal amplification and transduction in phytochrome photosensors

2014

[Introduction] Page 2 of 20 Sensory proteins must relay structural signals from the sensory site over large distances to regulatory output domains. Phytochromes are a major family of red-light sensing kinases that control diverse cell ular functions in plants, bacteria, and fungi. 1-9 Bacterial phytochro mes consist of a photosensory core and a C-te rminal regulatory domain. 10,11 Structures of photosensory cores are reported in the resting state 12-18 and conformational responses to light activat ion have been proposed in the vicinity of the chromophore. 19-23 However, the structure of the signalling state and the mechanism of downstream signal re lay through the photosensory core remain e…

Models MolecularLight Signal TransductionProtein ConformationCrystallography X-RayArticleProtein structureBacterial Proteinsmolecular biophysicsDeinococcusBinding siteCalcium signalingBinding SitesMultidisciplinarybiokemiabiologyPhytochrometa1182Deinococcus radioduransChromophorebiology.organism_classificationBiochemistryBiophysicsDeinococcusPhytochromeTransduction (physiology)röntgenkristallografiaNature
researchProduct

Sequential conformational transitions and α-helical supercoiling regulate a sensor histidine kinase

2017

Sensor histidine kinases are central to sensing in bacteria and in plants. They usually contain sensor, linker, and kinase modules and the structure of many of these components is known. However, it is unclear how the kinase module is structurally regulated. Here, we use nano- to millisecond time-resolved X-ray scattering to visualize the solution structural changes that occur when the light-sensitive model histidine kinase YF1 is activated by blue light. We find that the coiled coil linker and the attached histidine kinase domains undergo a left handed rotation within microseconds. In a much slower second step, the kinase domains rearrange internally. This structural mechanism presents a t…

Models MolecularkinaasitentsyymitHistidine KinaseLightProtein ConformationScienceQCrystallography X-RayArticleProtein Structure SecondaryaktivointiBacterial ProteinsProtein DomainsX-Ray DiffractionphotoactivationScattering Small AngleNanotechnologysensor histidine kinasesNature Communications
researchProduct

Fast Photochemistry of Prototypical Phytochromes : A Species vs. Subunit Specific Comparison

2015

Phytochromes are multi-domain red light photosensor proteins, which convert red light photons to biological activity utilizing the multitude of structural and chemical reactions. The steady increase in structural information obtained from various bacteriophytochromes has increased understanding about the functional mechanism of the photochemical processes of the phytochromes. Furthermore, a number of spectroscopic studies have revealed kinetic information about the light-induced reactions. The spectroscopic changes are, however, challenging to connect with the structural changes of the chromophore and the protein environment, as the excited state properties of the chromophores are very sens…

laser spectroscopyfluoresenssired photosensorstransient absorptionexcited state dynamics
researchProduct

Assembly of a Filamin Four-domain Fragment and the Influence of Splicing Variant-1 on the Structure

2011

Filamins are scaffold proteins that bind to various proteins, including the actin cytoskeleton, integrin adhesion receptors, and adaptor proteins such as migfilin. Alternative splicing of filamin, largely constructed from 24 Ig-like domains, is thought to have a role in regulating its interactions with other proteins. The filamin A splice variant-1 (FLNa var-1) lacks 41 amino acids, including the last β-strand of domain 19, FLNa(19), and the first β-strand of FLNa(20) that was previously shown to mask a key binding site on FLNa(21). Here, we present a structural characterization of domains 18-21, FLNa(18-21), in the FLNa var-1 as well as its nonspliced counterpart. A model of nonspliced FLN…

Models MolecularFilaminsProtein domainBiologyFilaminBiochemistryProtein Structure SecondaryStructure-Activity RelationshipContractile ProteinsProtein structureHumansFLNANuclear Magnetic Resonance BiomolecularMolecular BiologyMicrofilament ProteinsAlternative splicingta1182Signal transducing adaptor proteinCell BiologyActin cytoskeletonMolecular biologyProtein Structure TertiaryCell biologyAlternative SplicingProtein Structure and FoldingRNA splicingJournal of Biological Chemistry
researchProduct

The three-dimensional structure of Drosophila melanogaster (6–4) photolyase at room temperature

2021

A crystal structure of a photolyase at room temperature confirms the structural information obtained from cryogenic crystallography and paves the way for time-resolved studies of the photolyase at an X-ray free-electron laser.

MECHANISMMaterials scienceAbsorption spectroscopyDNA repairfotobiologia02 engineering and technologyCrystal structureREPAIR ACTIVITY03 medical and health sciencesCOLI DNA PHOTOLYASEX-RAY-DIFFRACTIONCryptochromeStructural BiologyAnimalsserial crystallographyCRYSTAL-STRUCTURECRYPTOCHROMEPhotolyaseSERIAL FEMTOSECOND CRYSTALLOGRAPHY030304 developmental biology0303 health sciencesCrystallographyflavoproteinsFADResolution (electron density)TemperaturebanaanikärpänenDNAkidetiede(6-4) photolyase021001 nanoscience & nanotechnologyResearch PapersRADICAL TRANSFER(6–4) photolyaseroom-temperature structureCrystallographyphotolyasesDrosophila melanogasterRECONSTITUTIONX-ray crystallography1182 Biochemistry cell and molecular biologylämpötilaproteiinit0210 nano-technologyDeoxyribodipyrimidine Photo-LyasePHOTOACTIVATIONVisible spectrumActa Crystallographica Section D Structural Biology
researchProduct

Structural mechanism of signal transduction in a phytochrome histidine kinase

2022

AbstractPhytochrome proteins detect red/far-red light to guide the growth, motion, development and reproduction in plants, fungi, and bacteria. Bacterial phytochromes commonly function as an entrance signal in two-component sensory systems. Despite the availability of three-dimensional structures of phytochromes and other two-component proteins, the conformational changes, which lead to activation of the protein, are not understood. We reveal cryo electron microscopy structures of the complete phytochrome from Deinoccocus radiodurans in its resting and photoactivated states at 3.6 Å and 3.5 Å resolution, respectively. Upon photoactivation, the photosensory core module hardly changes its ter…

Models MolecularkinaasitMultidisciplinaryphotochemistryHistidine KinaseLightBacteriaelectron microscopyBiochemistry and Molecular BiologyGeneral Physics and AstronomyelektronimikroskopiaGeneral ChemistryGeneral Biochemistry Genetics and Molecular BiologykinasesBacterial Proteinsplant signalling3111 BiomedicinePhytochromevalokemiaBiokemi och molekylärbiologiSignal Transduction
researchProduct

Structural basis for light control of cell development revealed by crystal structures of a myxobacterial phytochrome

2018

Phytochromes are red-light photoreceptors that were first characterized in plants, with homologs in photosynthetic and non-photosynthetic bacteria known as bacteriophytochromes (BphPs). Upon absorption of light, BphPs interconvert between two states denoted Pr and Pfr with distinct absorption spectra in the red and far-red. They have recently been engineered as enzymatic photoswitches for fluorescent-marker applications in non-invasive tissue imaging of mammals. This article presents cryo- and room-temperature crystal structures of the unusual phytochrome from the non-photosynthetic myxobacterium Stigmatella aurantiaca (SaBphP1) and reveals its role in the fruiting-body formation of this ph…

MODULE0301 basic medicinePHOTOACTIVE YELLOW PROTEINSIGNALING MECHANISMabsorption spectraMutantfotobiologiaphytochromesBiochemistryyhteyttäminenbakteeritSTIGMATELLA-AURANTIACA03 medical and health sciencesFRUITING BODY FORMATIONGeneral Materials ScienceMolecular replacementStigmatella aurantiacalcsh:ScienceUNUSUAL BACTERIOPHYTOCHROMEPHOTOCONVERSIONHistidine030102 biochemistry & molecular biologybiologyPhytochromeChemistryCRYSTALLOGRAPHYta1182photosynthetic bacteriaphotoreceptorsGeneral ChemistryChromophoreCondensed Matter Physicsbiology.organism_classification030104 developmental biologyCHROMOPHORE-BINDING DOMAINBiophysicsmyxobacterialcsh:Q3111 BiomedicinePhotosynthetic bacteriaproteiinitMOLECULAR REPLACEMENTBinding domainIUCrJ
researchProduct

Optogenetic Control of Bacterial Expression by Red Light

2022

In optogenetics, as in nature, sensory photoreceptors serve to control cellular processes by light. Bacteriophytochrome (BphP) photoreceptors sense red and far-red light via a biliverdin chromophore and, in response, cycle between the spectroscopically, structurally, and functionally distinct Pr and Pfr states. BphPs commonly belong to two-component systems that control the phosphorylation of cognate response regulators and downstream gene expression through histidine kinase modules. We recently demonstrated that the paradigm BphP from Deinococcus radiodurans exclusively acts as a phosphatase but that its photosensory module can control the histidine kinase activity of homologous receptors.…

HistoryfytokromitSIGNALING MECHANISMHistidine KinaseLightPolymers and PlasticsBiomedical EngineeringHISTIDINE KINASESfotobiologiasensory photoreceptorBiochemistry Genetics and Molecular Biology (miscellaneous)Industrial and Manufacturing EngineeringbakteeritOPTICAL CONTROLgeeniekspressioBusiness and International ManagementoptogeneticsHEME OXYGENASEGENE-EXPRESSIONphytochromeoptogenetiikkaPHOTORECEPTORSBacteriaBiliverdineREARRANGEMENTSBACTERIOPHYTOCHROMESGeneral MedicinePhosphoric Monoester HydrolasesOptogeneticsreseptorit (biokemia)two-component systemESCHERICHIA-COLIgene expression1182 Biochemistry cell and molecular biology3111 BiomedicinePhytochromevalosignal transductionSSRN Electronic Journal
researchProduct

Three proteins regulating integrin function - filamin, 14-3-3 and RIAM

2011

integriinitfosforylaatiointegrinphosphorylationRIAMtalinfilamiinitsäätelyproteiinitcytoplasmic interactionsfilamin A variant-1
researchProduct

Connection between Absorption Properties and Conformational Changes in Deinococcus radiodurans Phytochrome

2014

Phytochromes consist of several protein domains and a linear tetrapyrrole molecule, which interact as a red-light-sensing system. In this study, size-exclusion chromatography and light-scattering techniques are combined with UV-vis spectroscopy to investigate light-induced changes in dimeric Deinococcus radiodurans bacterial phytochrome (DrBphP) and its subdomains. The photosensory unit (DrCBD-PHY) shows an unusually stable Pfr state with minimal dark reversion, whereas the histidine kinase (HK) domain facilitates dark reversion to the resting state. Size-exclusion chromatography reveals that all phytochrome fragments remain as dimers in the illuminated state and dark state. Still, the elut…

biologyPhytochromeProtein ConformationElutionProtein domainHistidine kinaseta1182Deinococcus radioduransSDG 10 - Reduced Inequalitiesbiology.organism_classificationBiochemistryTetrapyrroleProtein Structure Tertiarychemistry.chemical_compoundDark stateBacterial ProteinsBiochemistrychemistry/dk/atira/pure/sustainabledevelopmentgoals/reduced_inequalitiesBiophysicsMoleculeSpectrophotometry UltravioletDeinococcusPhytochromeBiochemistry
researchProduct

β2 integrin phosphorylation on Thr758 acts as a molecular switch to regulate 14-3-3 and filamin binding

2008

AbstractLeukocyte integrins of the β2 family are essential for immune cell-cell adhesion. In activated cells, β2 integrins are phosphorylated on the cytoplasmic Thr758, leading to 14-3-3 protein recruitment to the β2 integrin. The mutation of this phosphorylation site impairs cell adhesion, actin reorganization, and cell spreading. Thr758 is contained in a Thr triplet of β2 that also mediates binding to filamin. Here, we investigated the binding of filamin, talin, and 14-3-3 proteins to phosphorylated and unphosphorylated β2 integrins by biochemical methods and x-ray crystallography. 14-3-3 proteins bound only to the phosphorylated integrin cytoplasmic peptide, with a high affinity (Kd, 261…

Models MolecularTalinThreonineanimal structuresFilaminsT-LymphocytesStatic ElectricityImmunologyIntegrinCD18macromolecular substancesPlasma protein bindingIn Vitro TechniquesFilaminBiochemistryJurkat Cells03 medical and health sciencesFilamin bindingContractile Proteins0302 clinical medicineCell AdhesionHumansProtein Interaction Domains and MotifsPhosphorylationCell adhesion030304 developmental biology0303 health sciencesBinding SitesbiologyChemistryMicrofilament ProteinsCell BiologyHematologyIntercellular Adhesion Molecule-1Talin bindingRecombinant ProteinsCell biology14-3-3 ProteinsAmino Acid SubstitutionCD18 AntigensMultiprotein Complexes030220 oncology & carcinogenesisbiology.proteinPhosphorylationProtein BindingBlood
researchProduct

Coordination of the biliverdin D-ring in bacteriophytochromes.

2018

Phytochrome proteins translate light into biochemical signals in plants, fungi and microorganisms. Light cues are absorbed by a bilin chromophore, leading to an isomerization and a rotation of the D-ring. This relays the signal to the protein matrix. A set of amino acids, which is conserved across the phytochrome superfamily, holds the chromophore in the binding pocket. However, the functional role of many of these amino acids is not yet understood. Here, we investigate the hydrogen bonding network which surrounds the D-ring of the chromophore in the resting (Pr) state. We use UV/vis spectroscopy, infrared absorption spectroscopy and X-ray crystallography to compare the photosensory domains…

0301 basic medicineModels MolecularStereochemistryProtein ConformationProtein Data Bank (RCSB PDB)General Physics and Astronomyphytochrome proteinsbakteerit03 medical and health scienceschemistry.chemical_compoundProtein structureBacterial ProteinsProteobacteriabiochemical signalsDeinococcusPhysical and Theoretical ChemistryStigmatella aurantiacaBiliverdinBinding SitesbiologyPhytochromeBiliverdineta1182Deinococcus radioduransHydrogen BondingChromophorebiology.organism_classificationPhotochemical ProcessesD-ring030104 developmental biologychemistryproteiinitvalokemiaDeinococcusPhytochromeProtein BindingPhysical chemistry chemical physics : PCCP
researchProduct