6533b82dfe1ef96bd12909a2
RESEARCH PRODUCT
Light-induced Changes in the Dimerization Interface of Bacteriophytochromes
Heikki TakalaHeikki TakalaMarko LinnaAlexander BjörlingSebastian WestenhoffJanne A. Ihalainensubject
Histidine KinaseLightProtein ConformationMutantCrystallography X-RayBiochemistryProtein structureBacterial Proteinsx-ray scatteringcell signalingDeinococcusMolecular BiologybiologyPhytochromeHistidine kinaseMutagenesista1182Photoreceptor proteinDeinococcus radioduransCell Biologybiology.organism_classificationphotoreceptormolecular dynamicsProtein Structure TertiaryBiochemistryhigh performance liquid chromatography (HPLC)BiophysicsDeinococcusPhytochromeDimerizationProtein KinasesmutagenesisMolecular Biophysicsdescription
Phytochromes are dimeric photoreceptor proteins that sense red light levels in plants, fungi, and bacteria. The proteins are structurally divided into a light-sensing photosensory module consisting of PAS, GAF, and PHY domains and a signaling output module, which in bacteriophytochromes typically is a histidine kinase (HK) domain. Existing structural data suggest that two dimerization interfaces exist between the GAF and HK domains, but their functional roles remain unclear. Using mutational, biochemical, and computational analyses of the Deinococcus radiodurans phytochrome, we demonstrate that two dimerization interfaces between sister GAF and HK domains stabilize the dimer with approximately equal contributions. The existence of both dimerization interfaces is critical for thermal reversion back to the resting state. We also find that a mutant in which the interactions between the GAF domains were removed monomerizes under red light. This implies that the interactions between the HK domains are significantly altered by photoconversion. The results suggest functional importance of the dimerization interfaces in bacteriophytochromes.
year | journal | country | edition | language |
---|---|---|---|---|
2015-03-06 | Journal of Biological Chemistry |