6533b871fe1ef96bd12d1be9

RESEARCH PRODUCT

Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density mask.

Claus Peter HeusselKjell HeitmannDirk MarwedeManfred ThelenThomas UthmannHans-ulrich Kauczor

subject

AdultMalemedicine.medical_specialtyOpacityAdolescentPulmonary FibrosisHigh resolutionSensitivity and SpecificityRadiographic image interpretationAbsorptiometry PhotonPredictive Value of TestsmedicineImage Processing Computer-AssistedHumansRadiology Nuclear Medicine and imagingProspective StudiesLungAgedAged 80 and overArtificial neural networkbusiness.industryFollow up studiesMean ageGeneral MedicinePneumoniaMiddle AgedSurgeryLung diseaseRadiographic Image Interpretation Computer-AssistedFemaleTomographyNeural Networks ComputerNuclear medicinebusinessTomography X-Ray ComputedFollow-Up Studies

description

We compared multiple neural networks with a density mask for the automatic detection and quantification of ground-glass opacities on high-resolution CT under clinical conditions.Eighty-four patients (54 men and 30 women; age range, 18-82 years; mean age, 49 years) with a total of 99 consecutive high-resolution CT scans were enrolled in the study. The neural network was designed to detect ground-glass opacities with high sensitivity and to omit air-tissue interfaces to increase specificity. The results of the neural network were compared with those of a density mask (thresholds, -750/-300 H), with a radiologist serving as the gold standard.The neural network classified 6% of the total lung area as ground-glass opacities. The density mask failed to detect 1.3%, and this percentage represented the increase in sensitivity that was achieved by the neural network. The density mask identified another 17.3% of the total lung area to be ground-glass opacities that were not detected by the neural network. This area represented the increase in specificity achieved by the neural network. Related to the extent of the ground-glass opacities as classified by the radiologist, the neural network (density mask) reached a sensitivity of 99% (89%), specificity of 83% (55%), positive predictive value of 78% (18%), negative predictive value of 99% (98%), and accuracy of 89% (58%).Automatic segmentation and quantification of ground-glass opacities on high-resolution CT by a neural network are sufficiently accurate to be implemented for the preinterpretation of images in a clinical environment; it is superior to a double-threshold density mask.

10.2214/ajr.175.5.1751329https://pubmed.ncbi.nlm.nih.gov/11044035