6533b871fe1ef96bd12d25ae

RESEARCH PRODUCT

β-Aminobutyric Acid (BABA)-Induced Resistance in Arabidopsis thaliana: Link with Iron Homeostasis

David WendehennePauline TrapetRita Meunier-prestAgnès KlinguerAnna KulikAngélique Besson-bardBrigitte Mauch-maniEmmanuel KoenGaétan GlauserGilles BoniLivia Atauri-mirandaDaphnée Brulé

subject

Physiology[SDV]Life Sciences [q-bio]IronMetaboliteArabidopsisPlant ImmunityBiologyIron Chelating AgentsAminobutyric acidERWINIA-CHRYSANTHEMI INFECTIONchemistry.chemical_compoundMetabolomicsGene Expression Regulation Plant[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyHomeostasisMetabolomicsFERRITIN SYNTHESISBOTRYTIS-CINEREATOMATO PLANTSGeneDisease ResistancePlant DiseasesBotrytis cinereachemistry.chemical_classificationAminobutyratesfungifood and beveragesGeneral Medicinebiology.organism_classificationPLANT IMMUNITYDL-3-AMINOBUTYRIC ACIDAmino acidPlant LeavesFerritinPhenotypeBiochemistrychemistryCHELATE REDUCTASESeedlingsDEFENSE RESPONSES[SDE]Environmental Sciencesbiology.proteinPHYTOPHTHORA-INFESTANSBotrytisREFERENCE GENESAgronomy and Crop Science

description

International audience; Bêta-Aminobutyric acid (BABA) is a nonprotein amino acid inducing resistance in many different plant species against a wide range of abiotic and biotic stresses. Nevertheless, how BABA primes plant natural defense reactions remains poorly understood. Based on its structure, we hypothesized and confirmed that BABA is able to chelate iron (Fe) in vitro. In vivo, we showed that it led to a transient Fe deficiency response in Arabidopsis thaliana plants exemplified by a reduction of ferritin accumulation and disturbances in the expression of genes related to Fe homeostasis. This response was not correlated to changes in Fe concentrations, suggesting that BABA affects the availability or the distribution of Fe rather than its assimilation. The phenotype of BABA-treated plants was similar to those of plants cultivated in Fe-deficient conditions. A metabolomic analysis indicated that both BABA and Fe deficiency induced the accumulation of common metabolites, including p-couma-roylagmatine, a metabolite previously shown to be synthesized in several plant species facing pathogen attack. Finally, we showed that the protective effect induced by BABA against Botrytis cinerea was mimicked by Fe deficiency. In conclusion, the Fe deficiency response caused by BABA could bring the plant to a defense-ready state, participating in the plant resistance against the pathogens.

https://doi.org/10.1094/mpmi-05-14-0142-r