6533b871fe1ef96bd12d25f9

RESEARCH PRODUCT

Determining cantilever stiffness from thermal noise

Matthias TemmenMichael ReichlingJannis LübbeAngelika KühnlePhilipp Rahe

subject

CantileverMaterials scienceAcousticsInstrumentationGeneral Physics and AstronomyNanotechnologythermal excitationlcsh:Chemical technologylcsh:TechnologySignal530Full Research PaperstiffnessQuality (physics)medicineNanotechnologylcsh:TP1-1185General Materials ScienceElectrical and Electronic Engineeringlcsh:Sciencecantileverlcsh:TOscillationSpectral densityStiffnessQ-factornoncontact atomic force microscopy (NC-AFM)lcsh:QC1-999spectral analysisNanoscienceresonanceQ factorlcsh:Qmedicine.symptomAFMlcsh:Physics

description

We critically discuss the extraction of intrinsic cantilever properties, namely eigenfrequency fn, quality factor Qn and specifically the stiffness kn of the nth cantilever oscillation mode from thermal noise by an analysis of the power spectral density of displacement fluctuations of the cantilever in contact with a thermal bath. The practical applicability of this approach is demonstrated for several cantilevers with eigenfrequencies ranging from 50 kHz to 2 MHz. As such an analysis requires a sophisticated spectral analysis, we introduce a new method to determine kn from a spectral analysis of the demodulated oscillation signal of the excited cantilever that can be performed in the frequency range of 10 Hz to 1 kHz regardless of the eigenfrequency of the cantilever. We demonstrate that the latter method is in particular useful for noncontact atomic force microscopy (NC-AFM) where the required simple instrumentation for spectral analysis is available in most experimental systems.

10.3762/bjnano.4.23https://pub.uni-bielefeld.de/record/2913805