6533b872fe1ef96bd12d425c

RESEARCH PRODUCT

Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training?

Andrea Salvador-pascualHelena CaboJose ViñaMa Carmen Gómez-cabreraBeatriz Ferrando

subject

medicine.medical_specialtyAntioxidantmedicine.medical_treatmentPhysical exerciseBiochemistryAntioxidantsSuperoxide dismutasechemistry.chemical_compoundPhysiology (medical)Internal medicinemedicineAnimalsHumansMuscle SkeletalXanthine oxidaseExercisechemistry.chemical_classificationReactive oxygen speciesOrganelle BiogenesisNADPH oxidasebiologyMuscle adaptationGlutathione peroxidaseAdaptation PhysiologicalMitochondria MuscleOxidative StressEndocrinologychemistryDietary Supplementsbiology.proteinOxidation-Reduction

description

Physical exercise increases the cellular production of reactive oxygen species (ROS) in muscle, liver, and other organs. This is unlikely due to increased mitochondrial production but rather to extramitochondrial sources such as NADPH oxidase or xanthine oxidase. We have reported a xanthine oxidase-mediated increase in ROS production in many experimental models from isolated cells to humans. Originally, ROS were considered as detrimental and thus as a likely cause of cell damage associated with exhaustion. In the past decade, evidence showing that ROS act as signals has been gathered and thus the idea that antioxidant supplementation in exercise is always recommendable has proved incorrect. In fact, we proposed that exercise itself can be considered as an antioxidant because training increases the expression of classical antioxidant enzymes such as superoxide dismutase and glutathione peroxidase and, in general, lowering the endogenous antioxidant enzymes by administration of antioxidant supplements may not be a good strategy when training. Antioxidant enzymes are not the only ones to be activated by training. Mitochondriogenesis is an important process activated in exercise. Many redox-sensitive enzymes are involved in this process. Important signaling molecules like MAP kinases, NF-κB, PGC-1α, p53, heat shock factor, and others modulate muscle adaptation to exercise. Interventions aimed at modifying the production of ROS in exercise must be performed with care as they may be detrimental in that they may lower useful adaptations to exercise.

https://doi.org/10.1016/j.freeradbiomed.2015.04.006