Search results for " Atomic Force"

showing 10 items of 172 documents

Surface modification of luminescent lanthanide phosphate nanorods with cationic "Quat-primer" polymers.

2011

"Quat-primer" polymers bearing cationic groups were investigated as a surface modifier for Tb-doped cerium phosphate green-emitting fluorescent nanorods (NRs). The NRs were synthesized by a microwave process without using any complex agents or ligands and were characterized with different analytical tools such as X-ray diffraction, transmission electron microscopy, and fluorescence spectroscopy. Poly(ethyleneimine) partially quarternized with glycidyltrimethylammonium chloride was synthesized separately and characterized in detail. (1)H and (13)C NMR spectroscopic studies revealed that the quaternary ammonium group was covalently attached to the polymer. UV-vis spectroscopy was used to exam…

Thermogravimetric analysisMagnetic Resonance SpectroscopyPolymersInorganic chemistryMicroscopy Atomic Force530Fluorescence spectroscopyPhosphatesMicroscopy Electron TransmissionX-Ray DiffractionLanthanumElectrochemistryGeneral Materials ScienceSpectroscopySpectroscopychemistry.chemical_classificationNanotubesChemistryCationic polymerizationSurfaces and InterfacesPolymerCondensed Matter PhysicshumanitiesDispersion stabilitySurface modificationNanorodhuman activitiesLangmuir : the ACS journal of surfaces and colloids
researchProduct

Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications.

2008

In the present work, a nanocomposite material formed by bacterial cellulose (BC) networks and calcium-deficient hydroxyapatite (HAp) powders was synthesized and characterized. The HAp nanoparticles were previously prepared by a wet chemical precipitation method, starting from aqueous solutions of calcium nitrate and di-ammonium phosphate salts. Energy-dispersive spectroscopy reveals that the prepared HAp corresponds to calcium-deficient hydroxyapatite. BC-HAp nanocomposites were prepared by introducing carboxymethylcellulose (CMC) into the bacteria culture media. HAp nanoparticles were then introduced and remained suspended in the culture medium during the formation of cellulose nanofibrils…

Thermogravimetric analysisMaterials scienceBiocompatibilityBiomedical EngineeringAnalytical chemistryBiocompatible MaterialsMicroscopy Atomic ForceBiochemistryCell LineNanocompositesBiomaterialschemistry.chemical_compoundCrystallinityX-Ray DiffractionSpectroscopy Fourier Transform InfraredHumansCelluloseCelluloseMolecular BiologyNanocompositeBacteriaGeneral MedicineThermogravimetryDurapatitechemistryChemical engineeringBacterial celluloseAttenuated total reflectionCarboxymethylcellulose SodiumThermogravimetryPowdersBiotechnologyActa biomaterialia
researchProduct

A new biodegradable and biocompatible hydrogel with polyaminoacid structure

2007

The preparation and physicochemical and biological characterization of a novel polyaminoacid hydrogel have been reported. The ,-poly(N-2- hydroxyethyl)-dl-aspartamide (PHEA) has been used as a starting polymer for a derivatization reaction with methacrylic anhydride (MA) to give rise to the methacrylate derivative named PHM. Photocrosslinking of PHM has been performed in aqueous solution at 313 nm and in the absence of toxic initiators. PHM-based hydrogel has been characterized by scanning electron microscopy, X-ray diffractometry, swelling measurements in aqueous media; the degradation of PHM-based hydrogel has been evaluated as a function of time in the absence or in the presence of ester…

Time FactorsBiocompatibilityCell SurvivalSurface PropertiesChemistry PharmaceuticalPharmaceutical ScienceMethacrylic anhydrideBiocompatible MaterialsMicroscopy Atomic ForceMethacrylateDosage formchemistry.chemical_compoundPolymethacrylic AcidsX-Ray DiffractionSpectroscopy Fourier Transform InfraredPolymer chemistryHumansTechnology PharmaceuticalDrug CarriersAqueous solutionHydrolysisEsterasestechnology industry and agricultureWaterHydrogelshydrogels FT-IRBlood ProteinschemistrySelf-healing hydrogelsDrug deliveryMicroscopy Electron ScanningK562 CellsPeptidesDrug carrierPorosityProtein BindingNuclear chemistryInternational Journal of Pharmaceutics
researchProduct

Partially Reversible Adsorption of Annexin A1 on POPC/POPS Bilayers Investigated by QCM Measurements, SFM, and DMC Simulations

2005

The kinetics of annexin A1 binding to solid-supported lipid bilayers consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS; 4:1) has been investigated as a function of the calcium ion concentration in the bulk phase. Quartz crystal microbalance measurements in conjunction with scanning force microscopy, fluorescence microscopy, and computer simulations indicate that at a given Ca2+ concentration annexin A1 adsorbs irreversibly on membrane domains enriched in POPS. By contrast, annexin A1 adsorbs reversibly on the POPC-enriched phase, which is composed of single POPS molecules embedded within a POPC matrix. The overall are…

Time FactorsSurface PropertiesLipid BilayersKineticsAnalytical chemistryBiosensing TechniquesPhosphatidylserinesMicroscopy Atomic ForceBiochemistrychemistry.chemical_compoundAdsorptionPhase (matter)MicroscopyComputer SimulationParticle SizeLipid bilayerMolecular BiologyPOPCAnnexin A1ChemistryOrganic Chemistrytechnology industry and agricultureMembranes ArtificialQuartz crystal microbalanceMembraneMicroscopy FluorescencePhosphatidylcholinesMolecular Medicinelipids (amino acids peptides and proteins)AdsorptionStress MechanicalMonte Carlo MethodChemBioChem
researchProduct

Study of the dynamics of biomolecules by high speed atomic force microscopy and surface enhanced Raman spectroscopy

2015

This thesis focuses on the coupling of High–Speed Atomic Force Microscopy (HS-AFM) and Surface Enhanced Raman Spectroscopy (SERS) for biomolecule analysis. We have designed a fabrication protocol to manufacture “SERS-active” substrates. The efficacy of gold, silver and gold-silver bimetallic crystalline nanoparticle substrates were evaluated. We have investigated the impact of optical and morphological features of the substrates on Raman signal intensity by analyzing well-known samples such as bipyridine ethylene and methylene blue molecules. We took an interest in three distinct biological problematics with HS-AFM and SERS analyses. First, we have detected the chemical signature of cytochr…

Tip–Enhanced Raman Spectroscopy (TERS)Surface Enhanced Raman Spectroscopy (SERS)CellsProteinsDetergent resistant membrane domains (DRMs)ProtéinesSpectroscopie Raman exaltée de surface (SERS)Nanoparticle substratesNoroviruses (NoVs)Substrats de nanoparticulesHigh–Speed Atomic Force Microscopy (HS-AFM)Microscopie à force atomique haute-vitesse (HS-AFM)Diffusion Raman exaltée par effet de pointe (TERS)Détergent résistant membrane domaines (DRMs)Plasmons de Surface Localisé (LSP)Cellules[PHYS.PHYS] Physics [physics]/Physics [physics]Localized Surface Plasmons (LSP)
researchProduct

High-Performance TiO2 Nanoparticle/DOPA-Polymer Composites

2014

Many natural materials are complex composites whose mechanical properties are often outstanding considering the weak constituents from which they are assembled. Nacre, made of inorganic (CaCO 3 ) and organic constituents, is a textbook example because of its strength and toughness, which are related to its hierarchical structure and its well-defi ned organic–inorganic interface. Emulating the construction principles of nacre using simple inorganic materials and polymers is essential for understanding how chemical composition and structure determine biomaterial functions. A hard multilayered nanocomposite is assembled based on alternating layers of TiO 2 nanoparticles and a 3-hydroxytyramine…

Titaniumchemistry.chemical_classificationToughnessNanocompositeMaterials sciencePolymers and PlasticsPolymersOrganic ChemistryMetal NanoparticlesNanoparticleBiomaterialPolymerAdhesionMicroscopy Atomic ForceCalcium CarbonateDihydroxyphenylalanineFracture toughnesschemistryElastic ModulusSpectroscopy Fourier Transform InfraredMaterials ChemistrySpectrophotometry UltravioletComposite materialMesocrystalMacromolecular Rapid Communications
researchProduct

Applications and development of acoustic and microwave atomic force microscopy for high resolution tomography analysis

2016

The atomic force microscope (AFM) is a powerful tool for the characterization of organic and inorganic materials of interest in physics, biology and metallurgy. However, conventional scanning probe microscopy techniques are limited to the probing surface properties, while the subsurface analysis remains difficult beyond nanoindentation methods. Thus, the present thesis is focused on two novel complementary scanning probe techniques for high-resolution volumetric investigation that were develop to tackle this persisting challenge in nanometrology.The first technique considered, called Mode Synthesizing Atomic Force Microscopy (MSAFM), has been exploited in collaboration with Dr. Laurene Teta…

Tomographie et reconstruction 3DMicroscopie à force atomique acoustique (MSAFM)Atomic force microscopy (AFM)[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsMode Synthesizing atomic force microscopy (MSAFM)Tomography anTomographie et reconstruction 3Dd 3D reconstruction[PHYS.PHYS] Physics [physics]/Physics [physics]Microscopie à force atomique micro-onde (SMM)Scanning microwave microscopy (SMM)Microscopie à force atomique (AFM)
researchProduct

Activity investigation of pinostrobin towards herpes simplex virus-1 as determined by atomic force microscopy

2009

In the present study, the antiviral activity of pinostrobin towards herpes simplex virus-1 (HSV-1) was investigated by MTT assay and atomic force microscopy. Pinostrobin can inhibit HSV-1 replication with 50% effective concentration (EC(50)) of 22.71 ± 1.72 μg/ml. MTT assay showed HSV-1 was significantly inhibited when pretreated with pinostrobin, with the inhibition of 85.69 ± 2.59%. Significant changes in morphology and size of HSV-1 were observed by atomic force microscopy (AFM) in response to pinostrobin treatment. AFM topography and phase images showed that with increasing time, the envelope was shedded and damaged, finally leading to virus inactivation. With increasing concentration, …

Virus inactivationPharmaceutical ScienceMice Inbred StrainsHerpesvirus 1 HumanMicrobial Sensitivity TestsMicroscopy Atomic Forcemedicine.disease_causePhase imageMiceIn vivoChlorocebus aethiopsDrug DiscoverymedicineAnimalsMTT assayTreatment effectVero CellsPharmacologyPlant ExtractsChemistryAtomic force microscopyHerpes SimplexVirologyHerpes simplex virusComplementary and alternative medicineFlavanonesBiophysicsVero cellMolecular MedicinePhytotherapyPhytomedicine
researchProduct

Etude dynamique et structurale de biomolécules par microscopie à force atomique HS-AFM : application à une petite protéine de choc thermique sHsp

2012

The atomic force microscopy (AFM) gives access to the topography of organic and inorganic samplesat the atomic scale. The latest innovations offer the possiblity to understand the sample nano-mechanicalproperties (elasticity, adhesion...). Its feature set allows overcoming the demands of nanotechnology,both in the fields of physics, chemistry and biology.However, understanding biological processes require faster acquisitions for the atomic forcemicroscopy, less than a second per frame. As conventional equipment does not offer the possibility toovercome the constraint of time for dynamical studies, a prototype of high-speed atomic forcemicroscope (HS-AFM) was developed in partnership with Pr…

[SDV.SA]Life Sciences [q-bio]/Agricultural sciences[SDV.SA] Life Sciences [q-bio]/Agricultural sciencesSHspActivité chaperonne et lipochaperonneChaperone and lipochaperonne activityFonctionnalisation de surfacesHigh-speed atomic force microscopy (HS-AFM)[ PHYS.COND.CM-GEN ] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Microscopie à force atomique (AFM)Biomimetic surfacesFunctionalization of surfacesMicroscopie à force atomique haute-vitesse (HSAFM)[PHYS.COND.CM-GEN] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other][CHIM.OTHE] Chemical Sciences/Other[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Atomic force microscopy (AFM)[ CHIM.OTHE ] Chemical Sciences/OtherSurfaces biomimétique[CHIM.OTHE]Chemical Sciences/Other[ SDV.SA ] Life Sciences [q-bio]/Agricultural sciences
researchProduct

Synthetic/ECM-inspired hybrid platform for hollow microcarriers with ROS-triggered nanoporation hallmarks

2017

Reactive oxygen species (ROS) are key pathological signals expressed in inflammatory diseases such as cancer, ischemic conditions and atherosclerosis. An ideal drug delivery system should not only be responsive to these signals but also should not elicit an unfavourable host response. This study presents an innovative platform for drug delivery where a natural/synthetic composite system composed of collagen type I and a synthesized polythioether, ensures a dual stimuli-responsive behaviour. Collagen type I is an extracellular matrix constituent protein, responsive to matrix metalloproteinases (MMP) cleavage per se. Polythioethers are stable synthetic polymers characterized by the presence o…

biomedical applicationsPathologyresponsivenessPolymersNanoparticlecardiomyocytes02 engineering and technologyMatrix metalloproteinaseMicroscopy Atomic Force01 natural sciencesreleaseHollow spheresExtracellular matrixDrug Delivery Systemsreactive oxygenCytotoxicitynanomaterialsdegradationchemistry.chemical_classificationDrug CarriersMicroscopyMultidisciplinaryIschemic conditionsQRAtomic ForcePolymerStimuli-responsive021001 nanoscience & nanotechnologyMicrospheresDrug deliveryMedicineROS (Reactive Oxygen Species) inflamed tissue stimuli-responsive biomaterials ischemic conditions hollow spheres polysulfides collagenCollagenhypoxia-reoxygenationdelivery0210 nano-technologyAnimals; Cell Line; Drug Carriers; Drug Delivery Systems; Matrix Metalloproteinases; Microscopy Atomic Force; Microspheres; Polymers; Rats; Reactive Oxygen Speciesmedicine.medical_specialtyROS (Reactive Oxygen Species)ScienceInflamed tissue010402 general chemistryArticleCell LineBiomaterialsPolysulfidesmedicineAnimalsReactive oxygen speciesMicrocarrierMatrix Metalloproteinases0104 chemical sciencesRatschemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoBiophysicsnanoparticlesReactive Oxygen Species
researchProduct