Search results for " Automata"
showing 10 items of 436 documents
New Results on Vector and Homing Vector Automata
2019
We present several new results and connections between various extensions of finite automata through the study of vector automata and homing vector automata. We show that homing vector automata outperform extended finite automata when both are defined over $ 2 \times 2 $ integer matrices. We study the string separation problem for vector automata and demonstrate that generalized finite automata with rational entries can separate any pair of strings using only two states. Investigating stateless homing vector automata, we prove that a language is recognized by stateless blind deterministic real-time version of finite automata with multiplication iff it is commutative and its Parikh image is …
Online Computation of Abelian Runs
2015
Given a word $w$ and a Parikh vector $\mathcal{P}$, an abelian run of period $\mathcal{P}$ in $w$ is a maximal occurrence of a substring of $w$ having abelian period $\mathcal{P}$. We give an algorithm that finds all the abelian runs of period $\mathcal{P}$ in a word of length $n$ in time $O(n\times |\mathcal{P}|)$ and space $O(\sigma+|\mathcal{P}|)$.
A Fast Algorithm Finding the Shortest Reset Words
2012
In this paper we present a new fast algorithm finding minimal reset words for finite synchronizing automata. The problem is know to be computationally hard, and our algorithm is exponential. Yet, it is faster than the algorithms used so far and it works well in practice. The main idea is to use a bidirectional BFS and radix (Patricia) tries to store and compare resulted subsets. We give both theoretical and practical arguments showing that the branching factor is reduced efficiently. As a practical test we perform an experimental study of the length of the shortest reset word for random automata with $n$ states and 2 input letters. We follow Skvorsov and Tipikin, who have performed such a s…
Isometric Words Based on Swap and Mismatch Distance
2023
An edit distance is a metric between words that quantifies how two words differ by counting the number of edit operations needed to transform one word into the other one. A word f is said isometric with respect to an edit distance if, for any pair of f-free words u and v, there exists a transformation of minimal length from u to v via the related edit operations such that all the intermediate words are also f-free. The adjective 'isometric' comes from the fact that, if the Hamming distance is considered (i.e., only mismatches), then isometric words are connected with definitions of isometric subgraphs of hypercubes. We consider the case of edit distance with swap and mismatch. We compare it…
Safety assurance of an industrial robotic control system using hardware/software co-verification
2022
As a general trend in industrial robotics, an increasing number of safety functions are being developed or re-engineered to be handled in software rather than by physical hardware such as safety relays or interlock circuits. This trend reinforces the importance of supplementing traditional, input-based testing and quality procedures which are widely used in industry today, with formal verification and model-checking methods. To this end, this paper focuses on a representative safety-critical system in an ABB industrial paint robot, namely the High-Voltage electrostatic Control system (HVC). The practical convergence of the high-voltage produced by the HVC, essential for safe operation, is f…
Superiority of exact quantum automata for promise problems
2011
In this note, we present an infinite family of promise problems which can be solved exactly by just tuning transition amplitudes of a two-state quantum finite automata operating in realtime mode, whereas the size of the corresponding classical automata grow without bound.
A Classification of Trapezoidal Words
2011
Trapezoidal words are finite words having at most n+1 distinct factors of length n, for every n>=0. They encompass finite Sturmian words. We distinguish trapezoidal words into two disjoint subsets: open and closed trapezoidal words. A trapezoidal word is closed if its longest repeated prefix has exactly two occurrences in the word, the second one being a suffix of the word. Otherwise it is open. We show that open trapezoidal words are all primitive and that closed trapezoidal words are all Sturmian. We then show that trapezoidal palindromes are closed (and therefore Sturmian). This allows us to characterize the special factors of Sturmian palindromes. We end with several open problems.
Fast computation of abelian runs
2016
Given a word $w$ and a Parikh vector $\mathcal{P}$, an abelian run of period $\mathcal{P}$ in $w$ is a maximal occurrence of a substring of $w$ having abelian period $\mathcal{P}$. Our main result is an online algorithm that, given a word $w$ of length $n$ over an alphabet of cardinality $\sigma$ and a Parikh vector $\mathcal{P}$, returns all the abelian runs of period $\mathcal{P}$ in $w$ in time $O(n)$ and space $O(\sigma+p)$, where $p$ is the norm of $\mathcal{P}$, i.e., the sum of its components. We also present an online algorithm that computes all the abelian runs with periods of norm $p$ in $w$ in time $O(np)$, for any given norm $p$. Finally, we give an $O(n^2)$-time offline randomi…
On generalized Lyndon words
2018
Abstract A generalized lexicographical order on infinite words is defined by choosing for each position a total order on the alphabet. This allows to define generalized Lyndon words. Every word in the free monoid can be factorized in a unique way as a nonincreasing factorization of generalized Lyndon words. We give new characterizations of the first and the last factor in this factorization as well as new characterization of generalized Lyndon words. We also give more specific results on two special cases: the classical one and the one arising from the alternating lexicographical order.
Abelian-Square-Rich Words
2017
An abelian square is the concatenation of two words that are anagrams of one another. A word of length $n$ can contain at most $\Theta(n^2)$ distinct factors, and there exist words of length $n$ containing $\Theta(n^2)$ distinct abelian-square factors, that is, distinct factors that are abelian squares. This motivates us to study infinite words such that the number of distinct abelian-square factors of length $n$ grows quadratically with $n$. More precisely, we say that an infinite word $w$ is {\it abelian-square-rich} if, for every $n$, every factor of $w$ of length $n$ contains, on average, a number of distinct abelian-square factors that is quadratic in $n$; and {\it uniformly abelian-sq…