Search results for " Band Gap"
showing 10 items of 78 documents
Impact of Electrical Stress and Neutron Irradiation on Reliability of Silicon Carbide Power MOSFET
2020
International audience; The combined effects of electrical stress and neutron irradiation of the last generation of commercial discrete silicon carbide power MOSFETs are studied. The single-event burnout (SEB) sensitivity during neutron irradiation is analyzed for unstressed and electrically stressed devices. For surviving devices, a comprehensive study of the breakdown voltage degradation is performed by coupling the electrical stress and irradiation effects. In addition, mutual influences between electrical stress and radiative constraints are investigated through TCAD modeling.
Generation of white LED light by frequency downconversion using a perylene-based dye
2012
A high efficiency white light emitting diode (LED) was fabricated by generation of frequency down-conversion from a GaN/InGaN blue LED. In place of conventional inorganic phosphors, a perylene-based dye was used for colour conversion. The resulting hybrid structure is analysed by focusing on the visual performance of the realised LEDs employing the most relevant photometric parameters of a light source. Preparation of the organic polymer is described as well. The thermal stability of the dye was investigated and a simple structure which avoids colour degradation is proposed.
Optical and structural study of the pressure-induced phase transition of CdWO$_4$
2017
Physical review / B 95(17), 174105 (2017). doi:10.1103/PhysRevB.95.174105
Influence of the electrodeposition conditions on the energetics of polypyrrole thin films
2008
The influence of the solvent used for the electrodeposition and that of the dopant anion on the energetics of electrochemically grown polypyrrole were studied by means of a non-destructive optical technique: Photocurrent Spectroscopy. Polypyrrole films doped with the same anion and grown in different solvents, both aqueous and non- aqueous, show the same HOMO-LUMO gap and the same Fermi level location in respect to HOMO. Polypyrrole films doped with different anions in aqueous solutions, present different values of indirect band gap and flat band potential, indicating that dopant anion influences both the defects band and the Fermi level locations.
Influences of Structure and Composition on the Photoelectrochemical Behaviour of Anodic Films on Zr and Zr-20at.%Ti
2008
Abstract A photoelectrochemical investigation on anodic films of different thickness grown on sputter-deposited Zr and Zr–20 at.%Ti was carried out. The estimated optical band gap and flat band potential of thick ( U F ≥ 50 V) anodic films were related to their crystalline structure and compared with those obtained for thinner ( U F ≤ 8 V/SCE) anodic oxides having undetermined crystalline structure. The E g values obtained by photocurrent spectroscopy were also compared with the experimental band gap estimated by other optical ex situ techniques and with the available theoretical estimates of the zirconia electronic structures in an attempt to reconcile the wide range of band gap data rep…
Photocurrent Spectroscopy Applied to the Characterization of Passive Films on Sputter-Deposited Ti-Zr Alloys
2008
Abstract A photoelectrochemical investigation on thin (⩽13 nm) mixed oxides grown on sputter-deposited Ti–Zr alloys of different composition by air exposure and by anodizing (formation voltage, UF = 4 V/SCE) was carried out. The experimental results showed that the optical band gap, E g opt , increases with increasing Zr content in both air formed and anodic films. Such behaviour is in agreement with the theoretical expectation based on the correlation between the band gap values of oxides and the difference of electronegativity of their constituents. The flat band potential of the mixed oxides was found to be almost independent on the Ti/Zr ratio into the film and more anodic with respect …
Physicochemical characterisation of thermally aged anodic films on magnetron sputtered niobium
2010
The influence of thermal aging, at intermediate temperature (1h at 250°C) and in different environments, on the electronic and solid-state properties of stabilized 160 nm thick amorphous anodic niobia, grown on magnetron sputtered niobium metal, has been studied. A detailed physicochemical characterisation of the a-Nb2O5/0.5M H2SO4 electrolyte junction has been carried out by means of photocurrent and electrochemical impedance spectroscopy as well by differential admittance measurements. A change in the optical band gap (3.45 eV) of niobia film has been observed after aging (3.30 eV) at 250°C in air for 1 hour. A cathodic shift (0.15-0.2 Volt) in the flat band potential of the junction has …
Delayed Luminescence in Lead Halide Perovskite Nanocrystals
2017
The mechanism responsible for the extremely long photoluminescence (PL) lifetimes observed in many lead halide perovskites is still under debate. While the presence of trap states is widely accepted, the process of electron detrapping back to the emissive state has been mostly ignored, especially from deep traps as these are typically associated with nonradiative recombination. Here, we study the photophysics of methylammonium lead bromide perovskite nanocrystals (PNCs) with a photoluminescence quantum yield close to unity. We show that the lifetime of the spontaneous radiative recombination in PNCs is as short as 2 ns, which is expected considering the direct bandgap character of perovskit…
Correlation between Zn vacancies and photoluminescence emission in ZnO films.
2006
Photoluminescence and positron annihilation spectroscopy have been used to characterize and identify vacancy-type defects produced in ZnO films grown on sapphire by metal-organic chemical-vapor deposition. The photoluminescence of the samples in the near band edge region has been studied, paying particular attention to the emission at 370.5 nm (3.346 eV). This emission has been correlated to the concentration of Zn vacancies in the films, which has been determined by positron annihilation spectroscopy. Jesus.Zuniga@uv.es Vicente.Munoz@uv.es
Optical characterization of Mg-doped GaN films grown by metalorganic chemical vapor phase deposition
2000
Scanning electron microscopy, micro-Raman, and photoluminescence (PL) measurements are reported for Mg-doped GaN films grown on (0001) sapphire substrates by low-pressure metalorganic chemical vapor phase deposition. The surface morphology, structural, and optical properties of GaN samples with Mg concentrations ranging from 1019 to 1021 cm−3 have been studied. In the scanning micrographs large triangular pyramids are observed, probably due to stacking fault formation and three-dimensional growth. The density and size of these structures increase with the amount of magnesium incorporated in the samples. In the photoluminescence spectra, intense lines were found at 3.36 and 3.31 eV on the tr…