Search results for " Boundary conditions"
showing 10 items of 87 documents
Superfluid density and quasi-long-range order in the one-dimensional disordered Bose–Hubbard model
2015
We study the equilibrium properties of the one-dimensional disordered Bose-Hubbard model by means of a gauge-adaptive tree tensor network variational method suitable for systems with periodic boundary conditions. We compute the superfluid stiffness and superfluid correlations close to the superfluid to glass transition line, obtaining accurate locations of the critical points. By studying the statistics of the exponent of the power-law decay of the correlation, we determine the boundary between the superfluid region and the Bose glass phase in the regime of strong disorder and in the weakly interacting region, not explored numerically before. In the former case our simulations are in agreem…
Local and nonlocal weighted pLaplacian evolution equations with Neumann boundary conditions
2011
In this paper we study existence and uniqueness of solutions to the local diffusion equation with Neumann boundary conditions and a bounded nonhomogeneous diffusion coefficient g ≥ 0, {ut = div (g|∇u|p-2∇u) in ]0; T[×Ωg|∇u|p-2u·n = 0 on ]0; T[×∂Ω; for 1 ≤ p < ∞. We show that a nonlocal counterpart of this diffusion problem is ut(t; x)= ∫ω J(x-y)g(x+y/2)|u(t; y)-u(t; x)| p-2 (u(t; y)-u(t; x)) dy in ]0; T[× Ω,where the diffusion coefficient has been reinterpreted by means of the values of g at the point x+y/2 in the integral operator. The fact that g ≥ 0 is allowed to vanish in a set of positive measure involves subtle difficulties, specially in the case p = 1.
A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
2008
In this paper we study the nonlocal p-Laplacian type diffusion equation,ut (t, x) = under(∫, Ω) J (x - y) | u (t, y) - u (t, x) |p - 2 (u (t, y) - u (t, x)) d y . If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div (| ∇ u |p - 2 ∇ u) with homogeneous Neumann boundary conditions. We prove existence and uniqueness of a strong solution, and if the kernel J is rescaled in an appropriate way, we show that the solutions to the corresponding nonlocal problems converge strongly in L∞ (0, T ; Lp (Ω)) to the solution of the p-Laplacian with homogeneous Neumann boundary conditions. The extreme case p = 1, that is, the nonlocal analogous t…
A review on some discrete variational techniques for the approximation of essential boundary conditions
2022
We review different techniques to enforce essential boundary conditions, such as the (nonhomogeneous) Dirichlet boundary condition, within a discrete variational framework, and especially techniques that allow to account for them in a weak sense. Those are of special interest for discretizations such as geometrically unfitted finite elements or high order methods, for instance. Some of them remain primal, and add extra terms in the discrete weak form without adding a new unknown: this is the case of the boundary penalty and Nitsche techniques. Others are mixed, and involve a Lagrange multiplier with or without stabilization terms. For a simple setting, we detail the different associated for…
Mesoscopic aspects of the computational homogenization with meshless modeling for masonry material
2020
The multiscale homogenization scheme is becoming a diffused tool for the analysis of heterogeneous materials as masonry since it allows dealing with the complexity of formulating closed-form constitutive laws by retrieving the material response from the solution of a unit cell (UC) boundary value problem (BVP). The robustness of multiscale simulations depends on the robustness of the nested macroscopic and mesoscopic models. In this study, specific attention is paid to the meshless solution of the UC BVP under plane stress conditions, comparing performances related to the application of linear displacement or periodic boundary conditions (BCs). The effect of the geometry of the UC is also i…
Implementation Aspects of 3D Lattice-BGK: Boundaries, Accuracy, and a New Fast Relaxation Method
1999
In many realistic fluid-dynamical simulations the specification of the boundary conditions, the error sources, and the number of time steps to reach a steady state are important practical considerations. In this paper we study these issues in the case of the lattice-BGK model. The objective is to present a comprehensive overview of some pitfalls and shortcomings of the lattice-BGK method and to introduce some new ideas useful in practical simulations. We begin with an evaluation of the widely used bounce-back boundary condition in staircase geometries by simulating flow in an inclined tube. It is shown that the bounce-back scheme is first-order accurate in space when the location of the non…
Helmholtz equation in unbounded domains: some convergence results for a constrained optimization problem
2016
We consider a constrained optimization problem arising from the study of the Helmholtz equation in unbounded domains. The optimization problem provides an approximation of the solution in a bounded computational domain. In this paper we prove some estimates on the rate of convergence to the exact solution.
Simulation of the glass transition in polymeric systems: Evidence for an underlying phase transition?
1998
Abstract The bond fluctuation model of polymer chains on sc lattices with an energy that favours long bonds can describe the slowing down of supercooled melts that approach the glass transition in qualitative similarity with various experiments. In this paper we focus on the question of whether there exists a correlation length that increases to large values when the temperature is lowered towards the glass transition. Two types of analysis are presented: firstly density oscillations near hard walls become long range, and the resulting correlation length becomes larger than the gyration radius, secondly oscillations in the pair correlation function in real space also become long range, and …
Curvature dependence of surface free energy of liquid drops and bubbles: A simulation study.
2010
We study the excess free energy due to phase coexistence of fluids by Monte Carlo simulations using successive umbrella sampling in finite LxLxL boxes with periodic boundary conditions. Both the vapor-liquid phase coexistence of a simple Lennard-Jones fluid and the coexistence between A-rich and B-rich phases of a symmetric binary (AB) Lennard-Jones mixture are studied, varying the density rho in the simple fluid or the relative concentration x_A of A in the binary mixture, respectively. The character of phase coexistence changes from a spherical droplet (or bubble) of the minority phase (near the coexistence curve) to a cylindrical droplet (or bubble) and finally (in the center of the misc…
Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions
2016
Exact values for bulk and shear viscosity are important to characterize a fluid and they are a necessary input for a continuum description. Here we present two novel methods to compute bulk viscosities by non-equilibrium molecular dynamics (NEMD) simulations of steady-state systems with periodic boundary conditions -- one based on frequent particle displacements and one based on the application of external bulk forces with an inhomogeneous force profile. In equilibrium simulations, viscosities can be determined from the stress tensor fluctuations via Green-Kubo relations; however, the correct incorporation of random and dissipative forces is not obvious. We discuss different expressions pro…