Search results for " CIRCUIT"
showing 10 items of 634 documents
Quantum logic gates by adiabatic passage
2006
International audience; We present adiabatic passage techniques for the realisation of one and two-qubit quantum Gates. These methods use evolution along dark-states of the system, avoiding decoherence effects such as spontaneous emission. The advantage of these methods is their robustness: they are insensitive to the fluctuations of the parameters and to partial knowledge of the system.
Intracortical inhibition and facilitation in human facial motor area: difference between upper and lower facial area.
2001
Objective: To investigate the intracortical inhibitory and excitatory systems in the motor cortical representation of upper and lower facial muscles. Methods: Paired-pulse transcranial magnetic stimulation (TMS) was applied to 7 healthy volunteers, with the interstimulus interval (ISI) between the conditioning stimulus (CS) and test stimulus, varied from 1 to 20 ms. CS was set at 90% of motor threshold. Muscle evoked potentials (MEPs) were recorded from first dorsal interosseus (FDI), orbicularis oculi (o. oculi) and mentalis muscles. Result: TMS evoked MEPs in o. oculi on both ipsi- and contralateral sides in all subjects. In the paired-pulse study, MEP amplitude in the mentalis decreased …
Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex
2002
Objective: To investigate the modulatory effect of a subthreshold low frequency repetitive transcranial magnetic stimulation (rTMS) train on motor cortex excitability. Methods: The study consisted of two separate experiments. Subjects received a 10 min long subthreshold 1Hz rTMS train. In the first experiment, (single pulse paradigm), cortical excitability was assessed by measuring the amplitude of motor evoked potentials (MEPs) before and after the rTMS train. In the second experiment, a paired pulse paradigm was employed. Results: Corticospinal excitability, as measured by the MEP amplitude, was reduced by the rTMS train (experiment 1), with a significant effect lasting for about 10 min a…
Electromechanical Numerical Analysis of an Air-Core Pulsed Alternator via Equivalent Network Formulation
2017
In this paper, the numerical analysis on an air-core pulsed alternator is presented. Since compulsators are characterized by very fast electromechanical transients, their accurate analysis requires strong coupling between the equations governing the electrical and the mechanical behaviors. The device is investigated by using a dedicated numerical code capable to take into account eddy currents, compensating windings, as well as the excitation/control circuits. Furthermore, the code is capable of modeling centrifugal forces and vibrations acting on the shaft due to electric and mechanical unbalances or to misalignments of the shaft from its centered position. This makes the code a very power…
A procedure to calculate the I–V characteristics of thin-film photovoltaic modules using an explicit rational form
2015
Abstract Accurate models of the electrical behaviour of photovoltaic modules are effective tools for system design. One or two diode equivalent circuits have been widely used even though some mathematical difficulties were found dealing with implicit equations. In this paper, a new model based on a simple rational function, which does not contain any implicit exponential form, is presented. The model was conceived in order to be used with thin-film photovoltaic modules, whose current–voltage curves are characterised by very smooth shapes. The parameters of the model are evaluated by means of the derivatives of the issued characteristics in the short circuit and open circuit points at standa…
Photonic-crystal silicon-nanocluster light-emitting device
2006
We report on enhanced light extraction from a light-emitting device based on amorphous silicon nanoclusters, suitable for very-large-scale integration, and operating at room temperature. Standard low-cost optical lithography is employed to fabricate a two-dimensional photonic crystal onto the device. We measured a vertical emission with the extracted radiation enhanced by over a factor of 4, without the aid of any buried reflector. These achievements demonstrate that a cost-effective exploitation of photonic crystals is indeed within the reach of semiconductor industry and open the way to a new generation of nanostructured silicon devices in which photonic and electronic functions are integ…
Plasmonic effects of ultra-thin Mo films on hydrogenated amorphous Si photovoltaic cells
2012
We report on the improvement of short circuit current (JSC), fill factor (FF), and open circuit resistance (ROC) in hydrogenated amorphous silicon (a-Si:H) photovoltaic cells with a p-type/intrinsic/n-type structure, achieved by the addition of an ultra-thin molybdenum film between the p-type film and the transparent conductive oxide/glass substrate. For suitable conditions, improvements of ≈10% in average internal quantum efficiency and up to 5%–10% under standard illumination in JSC, FF, and ROC are observed. These are attributed to the excitation of surface plasmon polariton modes of the a-Si:H/Mo interface.
Control of signal coherence in parametric frequency mixing with incoherent pumps: Narrowband mid-infrared light generation by downconversion of broad…
2012
International audience; We study, with numerical simulations using the generalized nonlinear envelope equation, the processes of optical parametric and difference- and sum-frequency generation (SFG) with incoherent pumps in optical media with both quadratic and third-order nonlinearity, such as periodically poled lithium niobate. With ultrabroadband amplified spontaneous emission pumps or continua (spectral widths > 10 THz), group-velocity matching of a near-IR pump and a short-wavelength mid-IR (MIR) idler in optical parametric generation may lead to more than 15-fold relative spectral narrowing of the generated MIR signal. Moreover, the SFG process may also lead to 6-fold signal coherence…
First experimental demonstration of a plasmonic MMI switch in 10 Gb/s true data traffic conditions
2012
We report the first experimental performance evaluation of a 75 um long plasmonic MMI switch, hetero-integrated on a SOI platform, operating with 10Gb/s data signals. The switch exhibits 2.9μs response time and 44.5% modulation depth while its extinction ratio varies from 5.4 to -1.5 dB for 35mW switching power. Error-free performance was achieved.
A Hardware and Secure Pseudorandom Generator for Constrained Devices
2018
Hardware security for an Internet of Things or cyber physical system drives the need for ubiquitous cryptography to different sensing infrastructures in these fields. In particular, generating strong cryptographic keys on such resource-constrained device depends on a lightweight and cryptographically secure random number generator. In this research work, we have introduced a new hardware chaos-based pseudorandom number generator, which is mainly based on the deletion of an Hamilton cycle within the $N$ -cube (or on the vectorial negation), plus one single permutation. We have rigorously proven the chaotic behavior and cryptographically secure property of the whole proposal: the mid-term eff…