Search results for " Circuits"

showing 10 items of 187 documents

RESONANT ACTIVATION AND NOISE ENHANCED STABILITY IN JOSEPHSON JUNCTIONS

2005

We investigate the interplay of two noise-induced effects on the temporal characteristics of short overdamped Josephson junctions in the presence of a periodic driving. We find that: (i) the mean life time of superconductive state has a minimum as a function of driving frequency, and near the minimum it actually does not depend on the noise intensity (resonant activation phenomenon); (ii) the noise enhanced stability phenomenon increases the switching time from superconductive to the resistive state. As a consequence there is a suitable frequency range of clock pulses, at which the noise has a minimal effect on pulse propagation in RSFQ electronic devices.

PhysicsJosephson effectJosephson phaseCondensed matter physicsRSFQ CIRCUITSJosephson energyESCAPEBARRIERTIMESStability (probability)FLUCTUATING POTENTIALSPi Josephson junctionSTATESSuperconducting tunnel junctionNoise (radio)Complexity, Metastability and Nonextensivity
researchProduct

The AD and ELENA orbit, trajectory and intensity measurement systems

2017

This paper describes the new Antiproton Decelerator (AD) orbit measurement system and the Extra Low ENergy Antiproton ring (ELENA) orbit, trajectory and intensity measurement system. The AD machine at European Organization for Nuclear Research (CERN) is presently being used to decelerate antiprotons from 3.57 GeV/c to 100 MeV/c for matter vs anti-matter comparative studies. The ELENA machine, presently under commissioning, has been designed to provide an extra deceleration stage down to 13.7 MeV/c. The AD orbit system is based on 32 horizontal and 27 vertical electrostatic Beam Position Monitor (BPM) fitted with existing low noise front-end amplifiers while the ELENA system consists of 24 \…

PhysicsMeasurement methodMeteorology010308 nuclear & particles physicsSystem of measurementBeam-line instrumentation (beam position and profile monitorsData acquisition concepts/dk/atira/pure/subjectarea/asjc/3100/3105Geodesy01 natural sciences030218 nuclear medicine & medical imagingIntensity (physics)03 medical and health sciences0302 clinical medicine0103 physical sciencesbunch length monitors)Digital signal processing (DSP)TrajectoryPhysics::Accelerator Physicsbeam-intensity monitorsOrbit (control theory)/dk/atira/pure/subjectarea/asjc/2600/2610InstrumentationDigital electronic circuitsMathematical PhysicsJournal of Instrumentation
researchProduct

Timing results using an FPGA-based TDC with large arrays of 144 SiPMs

2015

Silicon photomultipliers (SiPMs) have become an alternative to traditional tubes due to several features. However, their implementation to form large arrays is still a challenge especially due to their relatively high intrinsic noise, depending on the chosen readout. In this contribution, two modules composed of SiPMs with an area of roughly mm mm are used in coincidence. Coincidence resolving time (CRT) results with a field-programmable gate array, in combination with a time to digital converter, are shown as a function of both the sensor bias voltage and the digitizer threshold. The dependence of the CRT on the sensor matrix temperature, the amount of SiPM active area and the crystal type…

PhysicsNuclear and High Energy PhysicsPixelbusiness.industryDetectorBiasingNoise (electronics)Time-to-digital converterFull width at half maximumSilicon radiation detectorsSilicon photomultiplierOpticsNuclear Energy and EngineeringGate arrayPositron emission tomography (PET)Nuclear medicineTEORIA DE LA SEÑAL Y COMUNICACIONESElectronic engineeringTrigger circuitsElectrical and Electronic Engineeringbusiness
researchProduct

Tapered Two-Wire Waveguide for Time-Domain Integration of Broadband Terahertz Pulses

2021

We show the time-domain integration of terahertz pulses achieved in a sub-wavelength, tapered two-wire waveguide. Both simulation and experimental results prove the time integration functionality of this waveguide topology.

Physicsbusiness.industryTerahertz radiationPhysics::OpticsTopology (electrical circuits)Terahertz spectroscopy and technologysymbols.namesakeFourier transformBroadbandsymbolsOptoelectronicsWaveguide (acoustics)Time domainHeterodyne detectionTerahertz Time-domain integration WaveguidesbusinessNonlinear Sciences::Pattern Formation and SolitonsOSA Advanced Photonics Congress 2021
researchProduct

Low angle bending detection semi-transparent piezoresistive sensor

2022

We designed, fabricated, and validated a piezoresistive bending sensor, a fundamental component of wearable electronic devices for monitoring human motion. The most diffused opaque carbon-based resistance flex sensors suffer from low detection for small bending angles. The sensor we here present is based on a semi-transparent active material (fulleropyrrolidine bisadducts polymer) and has the remarkable advantage of good electrical properties for low bending angles. The fabrication steps are effective since a pre-patterned ITO/PET surface is functionalized by chronoamperometric deposition, and the silver electrical contacts are inkjet printed. We propose a fitting function of the measured t…

Piezoresistive sensor Wearable technology Semi-transparent Flexible Inkjet printed circuits Organic polymer films ChronoamperometrySettore CHIM/01 - Chimica AnaliticaSettore CHIM/02 - Chimica Fisica
researchProduct

Design of MOS Current Mode Logic Gates – Computing the Limits of Voltage Swing and Bias Current

2005

Minimizing a quality metric for an MCML gate, such as power-delay product or energy-delay product, requires solving a system of nonlinear equations subject to constraints on both bias current and voltage swing. In this paper, we will show that the limits of the swing and the bias current are affected by the constraints on maximum area and maximum delay. Moreover, methods for computing such limits are presented.

Power–delay productEmitter coupled logic circuitsBiasingSwingCMOS integrated circuitsComputer Science::Hardware Architecturemode logicComputer Science::Emerging TechnologiesLogic synthesisParasitic capacitanceControl theoryLogic gateHardware_INTEGRATEDCIRCUITSCurrent-mode logicHardware_LOGICDESIGNVoltageMathematics2005 IEEE International Symposium on Circuits and Systems
researchProduct

Quantized Dissensus in switching networks with nodes death and duplication* *Research supported by MURST-PRIN “Robust Techniques for uncertain system…

2009

Abstract In this paper we discuss agents exchanging quantized flows to diverge one from the others according to a dissensus protocol. A Quantized Gossip algorithm is considered. Evolutions of the states during switching intervals and at switching instants and their property are described and analyzed. The modeling of switching systems describing networks where death and duplication processes occur is described. Some properties of the topology reached by the network when different rules of duplication and inheritance are implemented.

Property (philosophy)Gossip algorithmsDistributed computingHybrid systemGene duplicationInheritance (genetic algorithm)Topology (electrical circuits)TopologyProtocol (object-oriented programming)MathematicsIFAC Proceedings Volumes
researchProduct

Novel high-performance QCA Fredkin gate and designing scalable QCA binary to gray and vice versa

2022

AbstractIn the design of digital logic circuits, QCA technology is an excellent alternative to CMOS technology. Its advantages over CMOS include low power consumption, fast circuit switching, and nanoscale design. Circuits that convert data between different formats are code converters. Code converters have an essential role in high-performance computing and signal processing. In this paper, first, we proposed a novel QCA structure for the quantum reversible Fredkin gate. Second, we proposed 4-bit and 8-bit QCA binary-to-gray converter and vice versa. For the second proposal, both reversible and irreversible structures are suggested. The proposed structures are scalable up to N bits. To cha…

QCA technologysignaalinkäsittelykvanttitietokoneetscalable designconservative gateFredkin gatekvanttilaskentaTheoretical Computer Scienceparity-preserving reversible gatedigital logic circuitsHardware and ArchitectureBinary to gray (B2G)Gray to binary (G2B)soluautomaatitquantum-dot cellular automataQCADesigner toolSoftwareInformation SystemsThe Journal of Supercomputing
researchProduct

Complex quantum state generation and coherent control based on integrated frequency combs

2019

The investigation of integrated frequency comb sources characterized by equidistant spectral modes was initially driven by considerations towards classical applications, seeking a more practical and miniaturized way to generate stable broadband sources of light. Recently, in the context of scaling the complexity of optical quantum circuits, these on-chip approaches have provided a new framework to address the challenges associated with non-classical state generation and manipulation. For example, multi-photon and high-dimensional states were to date either inaccessible, lacked scalability, or were difficult to manipulate, requiring elaborate approaches. The emerging field of quantum frequen…

Quantum opticsPhotonbusiness.industryComputer sciencePhysics::OpticsNanophotonics Photonic integrated circuits Quantum entanglement Spontaneous emissionSettore ING-INF/02 - Campi Elettromagnetici02 engineering and technologyQuantum entanglementSettore ING-INF/01 - ElettronicaAtomic and Molecular Physics and OpticsFrequency combQC350020210 optoelectronics & photonicsCoherent controlQuantum state0202 electrical engineering electronic engineering information engineeringElectronic engineeringCoherent statesPhotonicsbusiness
researchProduct

Selective modification of the band gaps of GaInNas/GaAs structures by quantum well intermixing techniques

2003

We report the unambiguous demonstration of controlled quantum well intermixing (QWI) in the technologically important GaInNAs/ GaAs 1.3 mum material system. QWI is a key technique to selectively modify the band gap of quantum wells, which has found broad application in semiconductor lasers and photonic integrated circuits (PICs). Extending such technology to GaInNAs/GaAs structures is highly desirable due to the technologically advantageous properties of this material system. Here, we investigate well-characterized GaInNAs quantum well material which has been annealed "to saturation" before QWI processing to allow unambiguous interpretation of results. After RTA at 700 degreesC for similar …

Quantum well intermixing GaInNAs Photonic integrated circuitsPhotoluminescenceMaterials scienceBand gapbusiness.industryPhotonic integrated circuitBioengineeringSemiconductor deviceSemiconductor laser theoryBiomaterialsSurface coatingMechanics of MaterialsOptoelectronicsPhotoluminescence excitationbusinessQuantum wellMaterials Science and Engineering: C
researchProduct