Search results for " Conjecture"

showing 10 items of 96 documents

Modular Calabi-Yau threefolds of level eight

2005

In the studies on the modularity conjecture for rigid Calabi-Yau threefolds several examples with the unique level 8 cusp form were constructed. According to the Tate Conjecture correspondences inducing isomorphisms on the middle cohomologies should exist between these varieties. In the paper we construct several examples of such correspondences. In the constructions elliptic fibrations play a crucial role. In fact we show that all but three examples are in some sense built upon two modular curves from the Beauville list.

Pure mathematicsConjectureMathematics - Number Theory14G1014J32General MathematicsModular formModular invariancemodular forms14G10; 14J32Cusp formModular curveAlgebraMathematics - Algebraic GeometryMathematics::Algebraic GeometryModular elliptic curveCalabi-YauFOS: MathematicsCalabi–Yau manifoldNumber Theory (math.NT)Tate conjectureAlgebraic Geometry (math.AG)MathematicsTate conjecturedouble coverings
researchProduct

Dorronsoro's theorem in Heisenberg groups

2020

A theorem of Dorronsoro from the 1980s quantifies the fact that real-valued Sobolev functions on Euclidean spaces can be approximated by affine functions almost everywhere, and at all sufficiently small scales. We prove a variant of Dorronsoro's theorem in Heisenberg groups: functions in horizontal Sobolev spaces can be approximated by affine functions which are independent of the last variable. As an application, we deduce new proofs for certain vertical vs. horizontal Poincare inequalities for real-valued functions on the Heisenberg group, originally due to Austin-Naor-Tessera and Lafforgue-Naor.

Pure mathematicsGeneral Mathematics010102 general mathematicsMathematical proof01 natural sciencesSobolev spacesymbols.namesakeEuclidean geometryPoincaré conjectureHeisenberg groupsymbolsAlmost everywhereAffine transformation0101 mathematicsVariable (mathematics)MathematicsBulletin of the London Mathematical Society
researchProduct

An Introduction to Hodge Structures

2015

We begin by introducing the concept of a Hodge structure and give some of its basic properties, including the Hodge and Lefschetz decompositions. We then define the period map, which relates families of Kahler manifolds to the families of Hodge structures defined on their cohomology, and discuss its properties. This will lead us to the more general definition of a variation of Hodge structure and the Gauss-Manin connection. We then review the basics about mixed Hodge structures with a view towards degenerations of Hodge structures; including the canonical extension of a vector bundle with connection, Schmid’s limiting mixed Hodge structure and Steenbrink’s work in the geometric setting. Fin…

Pure mathematicsHodge theory010102 general mathematicsVector bundleComplex differential form01 natural sciencesPositive formHodge conjectureMathematics::Algebraic Geometryp-adic Hodge theory0103 physical sciences010307 mathematical physics0101 mathematicsHodge dualMathematics::Symplectic GeometryHodge structureMathematics
researchProduct

Hodge Theory and Algebraic Cycles

2006

Algebraic cycles and Hodge theory, in particular Chow groups, Deligne cohomology and the study of cycle class maps were some of the themes of the Schwerpunkt ”Globale Methoden in der Komplexen Geometrie”. In this survey we report about several projects around the structure of (higher) Chow groups CH(X,n) [3] which the author has studied with his coauthors during this time by using different methods. In my opinion there are two interesting view points: first the internal structure of higher Chow groups, i.e., the existence of interesting elements and nontriviality of parts of their Bloch-Beilinson filtrations. This case has arithmetic and geometric features, and the groups in question show d…

Pure mathematicsIntersection theorymedicine.medical_specialtyHodge theoryAlgebraic cycleHodge conjectureDeligne cohomologyMathematics::Algebraic GeometryMathematics::K-Theory and HomologyAlgebraic surfacemedicineProjective varietyHodge structureMathematics
researchProduct

Cohomology, central extensions, and (dynamical) groups

1985

We analyze in this paper the process of group contraction which allows the transition from the Einstenian quantum dynamics to the Galilean one in terms of the cohomology of the Poincare and Galilei groups. It is shown that the cohomological constructions on both groups do not commute with the contraction process. As a result, the extension coboundaries of the Poincare group which lead to extension cocycles of the Galilei group in the “nonrelativistic” limit are characterized geometrically. Finally, the above results are applied to a quantization procedure based on a group manifold.

Pure mathematicsPhysics and Astronomy (miscellaneous)General MathematicsQuantum dynamicsGroup contractionCohomologyGalileansymbols.namesakeMathematics::Quantum AlgebraPoincaré groupPoincaré conjectureCalculussymbolsContraction (operator theory)MathematicsInternational Journal of Theoretical Physics
researchProduct

Weyl Asymptotics and Random Perturbations in a One-Dimensional Semi-classical Case

2019

We consider a simple model operator P in dimension 1 and show how random perturbations give rise to Weyl asymptotics in the interior of the range of P. We follow rather closely the work of Hager (Ann Henri Poincare 7(6):1035–1064, 2006) with some input also from Bordeaux Montrieux (Loi de Weyl presque sureet resolvante pour des operateurs differentiels nonautoadjoints, these, CMLS, Ecole Polytechnique, 2008) and Hager–Sjostrand (Math Ann 342(1):177–243, 2008). Some of the general ideas appear perhaps more clearly in this special situation.

Pure mathematicsRange (mathematics)symbols.namesakeOperator (computer programming)Simple (abstract algebra)Dimension (graph theory)Poincaré conjecturesymbolsMathematics
researchProduct

A maximal Function Approach to Two-Measure Poincaré Inequalities

2018

This paper extends the self-improvement result of Keith and Zhong in  Keith and Zhong (Ann. Math. 167(2):575–599, 2008) to the two-measure case. Our main result shows that a two-measure (p, p)-Poincare inequality for $$10$$ under a balance condition on the measures. The corresponding result for a maximal Poincare inequality is also considered. In this case the left-hand side in the Poincare inequality is replaced with an integral of a sharp maximal function and the results hold without a balance condition. Moreover, validity of maximal Poincare inequalities is used to characterize the self-improvement of two-measure Poincare inequalities. Examples are constructed to illustrate the role of t…

Pure mathematicsSelf improvementInequalitymedia_common.quotation_subject010102 general mathematicsPoincaré inequality01 natural sciencesMeasure (mathematics)symbols.namesakeDifferential geometryPoincaré inequality0103 physical sciencesPoincaré conjectureself-improvementsymbolsMaximal functionpotentiaaliteoria010307 mathematical physicsGeometry and Topology0101 mathematicsfunktionaalianalyysiepäyhtälötgeodesic two-measure spaceMathematicsmedia_common
researchProduct

Some algebraic clues towards a syntactic view on the Principles of Non-Contradiction and Excluded-Middle.

2014

This short paper just considers the possibility of a new view for posing and proving the Aristotle’s Principles of Non-Contradiction and Excluded-Middle. It is done by means of their refutability, or deducibility, respectively, under Tarski’s Consequence Operators.

Pure mathematicsSettore INF/01 - InformaticaLaw of excluded middlemedia_common.quotation_subjectShort paperComputer Science ApplicationsTheoretical Computer ScienceControl and Systems EngineeringNon-Contradiction Excluded-Middle Consequences Refutations ConjecturesModeling and SimulationCalculusFalsifiabilityContradictionAlgebraic numberInformation SystemsMathematicsmedia_common
researchProduct

Gromov–Hausdorff convergence and Poincaré inequalities

2015

Pure mathematicssymbols.namesakePoincaré conjectureGromov–Hausdorff convergencesymbolsMathematics
researchProduct

Un problematico esempio di amphibolia in Quint. inst. 7, 9, 11

2015

Nell’articolo, a proposito di Quint. inst. 7, 9, 11, si propone di mantenere la lezione nunc dei manoscritti e si evidenziano i punti di criticità della congettura di Badius e dell’emendamento di Spalding.

Quintilian; amphibolia; Textual criticism; Emendation; ConjectureQuintilianTextual criticismConjectureEmendationSettore L-FIL-LET/04 - Lingua E Letteratura Latinaamphibolia
researchProduct