Search results for " Cosmology"

showing 10 items of 1486 documents

"Mariage des Maillages": A new numerical approach for 3D relativistic core collapse simulations

2004

We present a new 3D general relativistic hydrodynamics code for simulations of stellar core collapse to a neutron star, as well as pulsations and instabilities of rotating relativistic stars. It uses spectral methods for solving the metric equations, assuming the conformal flatness approximation for the three-metric. The matter equations are solved by high-resolution shock-capturing schemes. We demonstrate that the combination of a finite difference grid and a spectral grid can be successfully accomplished. This "Mariage des Maillages" (French for grid wedding) approach results in high accuracy of the metric solver and allows for fully 3D applications using computationally affordable resour…

Astrophysics (astro-ph)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsGeneral Relativity and Quantum Cosmology
researchProduct

Minimum main sequence mass in quadratic Palatini $f(\mathcal{R})$ gravity

2019

General Relativity yields an analytical prediction of a minimum required mass of roughly $\sim 0.08-0.09 M_{\odot}$ for a star to stably burn sufficient hydrogen to fully compensate photospheric losses and, therefore, to belong to the main sequence. Those objects below this threshold (brown dwarfs) eventually cool down without any chance to stabilize their internal temperature. In this work we consider quadratic Palatini $f(\mathcal{R})$ gravity and show that the corresponding newtonian hydrostatic equilibrium equation contains a new term whose effect is to introduce a weakening/strenghtening of the gravitational interaction inside astrophysical bodies. This fact modifies the General Relati…

Astrophysics - Solar and Stellar AstrophysicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Solar and Stellar Astrophysics (astro-ph.SR)General Relativity and Quantum Cosmology
researchProduct

Ricci Reheating

2019

We present a model for viable gravitational reheating involving a scalar field directly coupled to the Ricci curvature scalar. Crucial to the model is a period of kination after inflation, which causes the Ricci scalar to change sign thus inducing a tachyonic effective mass $m^{2} \propto -H^2$ for the scalar field. The resulting tachyonic growth of the scalar field provides the energy for reheating, allowing for temperatures high enough for thermal leptogenesis. Additionally, the required period of kination necessarily leads to a blue-tilted primordial gravitational wave spectrum with the potential to be detected by future experiments. We find that for reheating temperatures $T_{\rm RH} \l…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsGeneral Relativity and Cosmologygr-qcFOS: Physical sciencesAstronomy and Astrophysicshep-phAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)7. Clean energy01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - PhenomenologyGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesastro-ph.CO010306 general physicsAstrophysics - Cosmology and Nongalactic AstrophysicsParticle Physics - Phenomenology
researchProduct

Coupled dark matter-dark energy in light of near Universe observations

2010

Cosmological analysis based on currently available observations are unable to rule out a sizeable coupling among the dark energy and dark matter fluids. We explore a variety of coupled dark matter-dark energy models, which satisfy cosmic microwave background constraints, in light of low redshift and near universe observations. We illustrate the phenomenology of different classes of dark coupling models, paying particular attention in distinguishing between effects that appear only on the expansion history and those that appear in the growth of structure. We find that while a broad class of dark coupling models are effectively models where general relativity (GR) is modified - and thus can b…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)General relativityCosmic microwave backgroundDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEnergia fosca (Astronomia)01 natural sciencesRedshift-space distortionssymbols.namesake0103 physical sciencesDark energy (Astronomy)010303 astronomy & astrophysicsPhysicsCosmologia010308 nuclear & particles physicsAstronomy and AstrophysicsGalaxyRedshiftCosmologyDark matter (Astronomy)symbolsDark energyMatèria fosca (Astronomia)Astrophysics - Cosmology and Nongalactic AstrophysicsHubble's law
researchProduct

Looking for MACHOs in the Spectra of Fast Radio Bursts

2019

We explore a novel search strategy for dark matter in the form of massive compact halo objects (MACHOs) such as primordial black holes or dense mini-halos in the mass range from $10^{-4}$ to 0.1 solar masses. These objects can gravitationally lens the signal of fast radio bursts (FRBs), producing a characteristic interference pattern in the frequency spectrum, similar to the previously studied femtolensing signal in gamma ray burst spectra. Unlike traditional searches using microlensing, FRB lensing will probe the abundance of MACHOs at cosmological distance scales (~Gpc) rather than just their distribution in the neighborhood of the Milky Way. The method is thus particularly relevant for d…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)Milky WayAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesPrimordial black holeAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGravitational microlensing01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesMassive compact halo object010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsParticle Physics - PhenomenologyPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HE010308 nuclear & particles physicsAstronomy and Astrophysicshep-phGalaxyInterstellar mediumHigh Energy Physics - PhenomenologySpace and Planetary Scienceastro-ph.COAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burstAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Constraints on the Coupling between Axionlike Dark Matter and Photons Using an Antiproton Superconducting Tuned Detection Circuit in a Cryogenic Penn…

2021

We constrain the coupling between axionlike particles (ALPs) and photons, measured with the superconducting resonant detection circuit of a cryogenic Penning trap. By searching the noise spectrum of our fixed-frequency resonant circuit for peaks caused by dark matter ALPs converting into photons in the strong magnetic field of the Penning-trap magnet, we are able to constrain the coupling of ALPs with masses around $2.7906-2.7914\,\textrm{neV/c}^2$ to $g_{a\gamma}< 1 \times 10^{-11}\,\textrm{GeV}^{-1}$. This is more than one order of magnitude lower than the best laboratory haloscope and approximately 5 times lower than the CERN axion solar telescope (CAST), setting limits in a mass and cou…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)PhotonAtomic Physics (physics.atom-ph)Dark matterOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomyphysics.atom-ph01 natural sciences7. Clean energyPhysics - Atomic PhysicsNuclear physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Physics::Atomic Physics010306 general physicsParticle Physics - PhenomenologySuperconductivityPhysicshep-phPenning trapCoupling (probability)Magnetic fieldHigh Energy Physics - PhenomenologyAntiprotonastro-ph.COPräzisionsexperimente - Abteilung BlaumCERN Axion Solar TelescopeAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

PBH assisted search for QCD axion dark matter

2022

The entropy production prior to BBN era is one of ways to prevent QCD axion with the decay constant $F_{a}\in[10^{12}{\rm GeV},10^{16}{\rm GeV}]$ from overclosing the universe when the misalignment angle is $\theta_{\rm i}=\mathcal{O}(1)$. As such, it is necessarily accompanied by an early matter-dominated era (EMD) provided the entropy production is achieved via the decay of a heavy particle. In this work, we consider the possibility of formation of primordial black holes during the EMD era with the assumption of the enhanced primordial scalar perturbation on small scales ($k>10^{4}{\rm Mpc}^{-1}$). In such a scenario, it is expected that PBHs with axion halo accretion develop to ultracomp…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)axionsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesmustat aukotAstrophysics::Cosmology and Extragalactic Astrophysicshiukkasfysiikkakosmologianeutron starspimeä aineHigh Energy Physics - Phenomenology (hep-ph)neutronitähdetParticle Physics - PhenomenologyHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEdark matter experimentsHigh Energy Physics::Phenomenologyprimordial black holesAstronomy and Astrophysicshep-phHigh Energy Physics - Phenomenologyastro-ph.COkvanttiväridynamiikkaHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Dark Sectors and New, Light, Weakly-Coupled Particles

2013

Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly compelling possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. This review summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. It is the summary of the Intensity Frontier subgroup "New, Light, Weakly-coupled Particles" of the Community Summer Study 2013 (Snowmass). We discuss axions, which solve the strong CP problem and are an excellent dark matter candidate, and their generalizatio…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)hep-exFOS: Physical scienceshep-phAstrophysics::Cosmology and Extragalactic AstrophysicsHigh Energy Physics - ExperimentHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)astro-ph.COParticle Physics - ExperimentAstrophysics - Cosmology and Nongalactic AstrophysicsParticle Physics - Phenomenology
researchProduct

Femtolensing by dark matter revisited

2018

Femtolensing of gamma ray bursts (GRBs) has been put forward as an exciting possibility to probe exotic astrophysical objects with masses below $10^{-13}$ solar masses such as small primordial black holes or ultra-compact dark matter minihalos, made up for instance of QCD axions. In this paper we critically review this idea, properly taking into account the extended nature of the source as well as wave optics effects. We demonstrate that most GRBs are inappropriate for femtolensing searches due to their large sizes. This removes the previous femtolensing bounds on primordial black holes, implying that vast regions of parameter space for primordial black hole dark matter are not robustly con…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)spectraAstrophysics::High Energy Astrophysical PhenomenaDark mattergravitational lensinghaloFOS: Physical sciencesPrimordial black holegamma ray experimentsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsParameter space01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsAxionParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Solar mass010308 nuclear & particles physicsraydark matter experimentsprimordial black holesAstronomy and Astrophysicshep-phPhysical opticsHigh Energy Physics - Phenomenologypair production13. Climate actionastro-ph.COGamma-ray burstlimitsAstrophysics - High Energy Astrophysical Phenomenagravitational-wavesAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Cosmological lepton asymmetry with a nonzero mixing angle \theta13

2012

While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle \theta_{13}, and show that for large \theta_{13} the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from Big Bang Nucleosynthesis, …

Astrophysics and AstronomyNuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectCosmic microwave backgroundCosmic background radiationAstrophysics::Cosmology and Extragalactic AstrophysicsEarly Universe7. Clean energy01 natural sciencesAsymmetryPartícules (Física nuclear)CosmologyBaryon asymmetryBig Bang nucleosynthesisPower Spectrum0103 physical sciences010306 general physicsTelescopemedia_commonPhysicsFlavor Oscillations010308 nuclear & particles physicsHigh Energy Physics::Phenomenology[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]ConstraintsParametersNeutrino DegeneracyHigh Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsLepton
researchProduct