Search results for " Cosmology"
showing 10 items of 1486 documents
"Mariage des Maillages": A new numerical approach for 3D relativistic core collapse simulations
2004
We present a new 3D general relativistic hydrodynamics code for simulations of stellar core collapse to a neutron star, as well as pulsations and instabilities of rotating relativistic stars. It uses spectral methods for solving the metric equations, assuming the conformal flatness approximation for the three-metric. The matter equations are solved by high-resolution shock-capturing schemes. We demonstrate that the combination of a finite difference grid and a spectral grid can be successfully accomplished. This "Mariage des Maillages" (French for grid wedding) approach results in high accuracy of the metric solver and allows for fully 3D applications using computationally affordable resour…
Minimum main sequence mass in quadratic Palatini $f(\mathcal{R})$ gravity
2019
General Relativity yields an analytical prediction of a minimum required mass of roughly $\sim 0.08-0.09 M_{\odot}$ for a star to stably burn sufficient hydrogen to fully compensate photospheric losses and, therefore, to belong to the main sequence. Those objects below this threshold (brown dwarfs) eventually cool down without any chance to stabilize their internal temperature. In this work we consider quadratic Palatini $f(\mathcal{R})$ gravity and show that the corresponding newtonian hydrostatic equilibrium equation contains a new term whose effect is to introduce a weakening/strenghtening of the gravitational interaction inside astrophysical bodies. This fact modifies the General Relati…
Ricci Reheating
2019
We present a model for viable gravitational reheating involving a scalar field directly coupled to the Ricci curvature scalar. Crucial to the model is a period of kination after inflation, which causes the Ricci scalar to change sign thus inducing a tachyonic effective mass $m^{2} \propto -H^2$ for the scalar field. The resulting tachyonic growth of the scalar field provides the energy for reheating, allowing for temperatures high enough for thermal leptogenesis. Additionally, the required period of kination necessarily leads to a blue-tilted primordial gravitational wave spectrum with the potential to be detected by future experiments. We find that for reheating temperatures $T_{\rm RH} \l…
Coupled dark matter-dark energy in light of near Universe observations
2010
Cosmological analysis based on currently available observations are unable to rule out a sizeable coupling among the dark energy and dark matter fluids. We explore a variety of coupled dark matter-dark energy models, which satisfy cosmic microwave background constraints, in light of low redshift and near universe observations. We illustrate the phenomenology of different classes of dark coupling models, paying particular attention in distinguishing between effects that appear only on the expansion history and those that appear in the growth of structure. We find that while a broad class of dark coupling models are effectively models where general relativity (GR) is modified - and thus can b…
Looking for MACHOs in the Spectra of Fast Radio Bursts
2019
We explore a novel search strategy for dark matter in the form of massive compact halo objects (MACHOs) such as primordial black holes or dense mini-halos in the mass range from $10^{-4}$ to 0.1 solar masses. These objects can gravitationally lens the signal of fast radio bursts (FRBs), producing a characteristic interference pattern in the frequency spectrum, similar to the previously studied femtolensing signal in gamma ray burst spectra. Unlike traditional searches using microlensing, FRB lensing will probe the abundance of MACHOs at cosmological distance scales (~Gpc) rather than just their distribution in the neighborhood of the Milky Way. The method is thus particularly relevant for d…
Constraints on the Coupling between Axionlike Dark Matter and Photons Using an Antiproton Superconducting Tuned Detection Circuit in a Cryogenic Penn…
2021
We constrain the coupling between axionlike particles (ALPs) and photons, measured with the superconducting resonant detection circuit of a cryogenic Penning trap. By searching the noise spectrum of our fixed-frequency resonant circuit for peaks caused by dark matter ALPs converting into photons in the strong magnetic field of the Penning-trap magnet, we are able to constrain the coupling of ALPs with masses around $2.7906-2.7914\,\textrm{neV/c}^2$ to $g_{a\gamma}< 1 \times 10^{-11}\,\textrm{GeV}^{-1}$. This is more than one order of magnitude lower than the best laboratory haloscope and approximately 5 times lower than the CERN axion solar telescope (CAST), setting limits in a mass and cou…
PBH assisted search for QCD axion dark matter
2022
The entropy production prior to BBN era is one of ways to prevent QCD axion with the decay constant $F_{a}\in[10^{12}{\rm GeV},10^{16}{\rm GeV}]$ from overclosing the universe when the misalignment angle is $\theta_{\rm i}=\mathcal{O}(1)$. As such, it is necessarily accompanied by an early matter-dominated era (EMD) provided the entropy production is achieved via the decay of a heavy particle. In this work, we consider the possibility of formation of primordial black holes during the EMD era with the assumption of the enhanced primordial scalar perturbation on small scales ($k>10^{4}{\rm Mpc}^{-1}$). In such a scenario, it is expected that PBHs with axion halo accretion develop to ultracomp…
Dark Sectors and New, Light, Weakly-Coupled Particles
2013
Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly compelling possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. This review summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. It is the summary of the Intensity Frontier subgroup "New, Light, Weakly-coupled Particles" of the Community Summer Study 2013 (Snowmass). We discuss axions, which solve the strong CP problem and are an excellent dark matter candidate, and their generalizatio…
Femtolensing by dark matter revisited
2018
Femtolensing of gamma ray bursts (GRBs) has been put forward as an exciting possibility to probe exotic astrophysical objects with masses below $10^{-13}$ solar masses such as small primordial black holes or ultra-compact dark matter minihalos, made up for instance of QCD axions. In this paper we critically review this idea, properly taking into account the extended nature of the source as well as wave optics effects. We demonstrate that most GRBs are inappropriate for femtolensing searches due to their large sizes. This removes the previous femtolensing bounds on primordial black holes, implying that vast regions of parameter space for primordial black hole dark matter are not robustly con…
Cosmological lepton asymmetry with a nonzero mixing angle \theta13
2012
While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle \theta_{13}, and show that for large \theta_{13} the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from Big Bang Nucleosynthesis, …