Search results for " DELIVERY"
showing 10 items of 1045 documents
Dextran-based therapeutic nanoparticles for hepatic drug delivery.
2016
Aim: Evaluation of dextran-based nanoparticles (DNP) as a drug delivery system to target myeloid cells of the liver. Materials & methods: DNP were synthesized and optionally PEGylated. Their toxicity and cellular uptake were studied in vitro. Empty and siRNA-carrying DNP were tested in vivo with regard to biodistribution and cellular uptake. Results: In vitro, DNP were taken up by cells of the myeloid lineage without compromising their viability. In vivo, empty and siRNA-carrying DNP distributed to the liver where a single treatment addressed approximately 70% of macrophages and dendritic cells. Serum parameters indicated no in vivo toxicity. Conclusion: DNP are multifunctional liver-s…
Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles
2016
Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes…
Skin-derived mesenchymal stem cells as quantum dot vehicles to tumors
2017
Dominyka Dapkute,1,2 Simona Steponkiene,1 Danute Bulotiene,1 Liga Saulite,3 Una Riekstina,3 Ricardas Rotomskis1,4 1Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania; 2Institute of Biosciences, Vilnius University, Vilnius, Lithuania; 3Faculty of Medicine, University of Latvia, Riga, Latvia; 4Biophotonics Group of Laser Research Center, Faculty of Physics, Vilnius University, Vilnius, Lithuania Purpose: Cell-mediated delivery of nanoparticles is emerging as a new method of cancer diagnostics and treatment. Due to their inherent regenerative properties, adult mesenchymal stem cells (MSCs) are naturally attracted to wounds and sites of inflammation, as well as tumors.…
Chemotherapeutic efficacy of curcumin and resveratrol against cancer: Chemoprevention, chemoprotection, drug synergism and clinical pharmacokinetics
2021
The frequent inefficiency of conventional cancer therapies due to drug resistance, non-targeted drug delivery, chemotherapy-associated toxic side effects turned the focus to bioactive phytochemicals. In this context, curcumin and resveratrol have emerged as potent chemopreventive and chemoprotective compounds modulating apoptotic and autophagic cell death pathways in cancer in vitro and in vivo. As synergistic agents in combination with clinically established anticancer drugs, the enhanced anticancer activity at reduced chemotherapy-associated toxicity towards normal organs can be explained by improved pharmacokinetics, pharmacodynamics, bioavailability and metabolism. With promising precli…
Dosimetric Impact of Interfractional Variations in Prostate Cancer Radiotherapy—Implications for Imaging Frequency and Treatment Adaptation
2019
Background and purpose: To analyze deviations of the applied from the planned doses on a voxel-by-voxel basis for definitive prostate cancer radiotherapy depending on anatomic variations and imaging frequency. Materials and methods: Daily in-room CT imaging was performed in treatment position for 10 patients with prostate cancer undergoing intensity-modulated radiotherapy (340 fraction CTs). Applied fraction doses were recalculated on daily images, and voxel-wise dose accumulation was performed using a deformable registration algorithm. For weekly imaging, weekly position correction vectors were derived and used to rigidly register daily scans of that week to the planning CT scan prior to d…
Carbon Nanodots for On Demand Chemophotothermal Therapy Combination to Elicit Necroptosis: Overcoming Apoptosis Resistance in Breast Cancer Cell Lines
2020
Background: Engineered luminescent carbon nanodots (CDs) are appealing nanomaterials for cancer image-guided photothermal therapy combining near infrared (NIR)&ndash
Improved display of synthetic IgG-binding domains on the baculovirus surface.
2004
Improved display of foreign protein moieties in combination with beneficial alteration of the viral surface properties should be of value for targeted and enhanced gene delivery. Here, we describe a vector based on Autographa californica multiple nucleopolyhedrovirus (AcMNPV) displaying synthetic IgG-binding domains (ZZ) of protein A fused to the transmembrane anchor of vesicular stomatitis virus (VSV) G protein. This display vector was equipped with a GFP/EGFP expression cassette enabling fluorescent detection in both insect and mammalian cells. The virus construct displayed the biologically active fusion protein efficiently and showed increased binding capacity to IgG. As the display is …
Targeted cancer therapy through antibody fragments-decorated nanomedicines.
2017
Active targeting in cancer nanomedicine, for improved delivery of agents and diagnose, has been reviewed as a successful way for facilitating active uptake of theranostic agents by the tumor cells. The application of a targeting moiety in the targeted carrier complexes can play an important role in differentiating between tumor and healthy tissues. The pharmaceutical carriers, as main part of complexes, can be polymeric nanoparticles, micelles, liposomes, nanogels and carbon nanotubes. The antibodies are among the natural ligands with highest affinity and specificity to target pharmaceutical nanoparticle conjugates. However, the limitations, such as size and long circulating half-lives, hin…
Imatinib-Loaded Micelles of Hyaluronic Acid Derivatives for Potential Treatment of Neovascular Ocular Diseases
2018
In this work, new micellar systems able to cross corneal barrier and to improve the permeation of imatinib free base were prepared and characterized. HA-EDA-C-16, HA-EDA-C-16-PEG, and HA-EDA-C-16-CRN micelles were synthesized starting from hyaluronic acid (HA), ethylenediamine (EDA), hexadecyl chains (C-16), polyethylene glycol (PEG), or L-carnitine (CRN). These nanocarriers showed optimal particle size and mucoadhesive properties. Imatinib-loaded micelles were able to interact with corneal barrier and to promote imatinib transcorneal permeation and penetration. In addition, a study was conducted to understand the in vitro imatinib inhibitory effect on a choroidal neovascularization process…
Albumin-Folate Conjugates for Drug-targeting in Photodynamic Therapy.
2016
Photodynamic therapy (PDT) is based on the cytotoxicity of photosensitizers in the presence of light. Increased selectivity and effectivity of the treatment is expected if a specific uptake of the photosensitizers into the target cells, often tumor cells, can be achieved. An attractive transporter for that purpose is the folic acid receptor α (FRα), which is overexpressed on the surface of many tumor cells and mediates an endocytotic uptake. Here, we describe the synthesis and photobiological characterization of polar β-carboline derivatives as photosensitizers covalently linked to folate-tagged albumin as the carrier system. The particles were taken up by KB (human carcinoma) cells within …