Search results for " DOCKING"

showing 10 items of 226 documents

A Novel Series of Acylhydrazones as Potential Anti-Candida Agents: Design, Synthesis, Biological Evaluation and In Silico Studies

2019

In the context of an increased incidence of invasive fungal diseases, there is an imperative need of new antifungal drugs with improved activity and safety profiles. A novel series of acylhydrazones bearing a 1,4-phenylene-bisthiazole scaffold was designed based on an analysis of structures known to possess anti-Candida activity obtained from a literature review. Nine final compounds were synthesized and evaluated in vitro for their inhibitory activity against various strains of Candida spp. The anti-Candida activity assay revealed that some of the new compounds are as active as fluconazole against most of the tested strains. A molecular docking study was conducted in order to evaluate the …

Antifungal AgentsMolecular modelIn silicoPharmaceutical ScienceContext (language use)anti-CandidaMicrobial Sensitivity Tests01 natural sciencesArticleAnalytical Chemistrylcsh:QD241-44103 medical and health scienceschemistry.chemical_compoundStructure-Activity Relationshiplcsh:Organic chemistryDrug DiscoverymedicinePhysical and Theoretical ChemistryFluconazole030304 developmental biologyCandida0303 health sciencesMolecular Structure010405 organic chemistrymolecular modelingLanosterolOrganic Chemistryanti-<i>Candida</i>HydrazonesBiological activityIn vitro0104 chemical sciencesMolecular Docking Simulationlanosterol 14α-demethylaseADMETchemistryBiochemistryDesign synthesisChemistry (miscellaneous)Drug DesignMolecular MedicinethiazoleFluconazoleacylhydrazonemedicine.drugProtein BindingMolecules
researchProduct

Ursolic acid ameliorates stress and reactive oxygen species in C. elegans knockout mutants by the dopamine Dop1 and Dop3 receptors.

2020

Abstract Background Depression and stress-related disorders are leading causes of death worldwide. Standard treatments elevating serotonin or noradrenaline levels are not sufficiently effective and cause adverse side effects. A connection between dopamine pathways and stress-related disorders has been suggested. Compounds derived from herbal medicine could be a promising alternative. We examined the neuroprotective effects of ursolic acid (UA) by focusing on dopamine signalling. Methods Trolox equivalent capacity assay was used to determine the antioxidant activities of UA in vitro. C. elegans N2 wildtype and dopamine receptor-knockout mutants (dop-1-deficient RB665 and dop-3-deficient LX70…

Antioxidantmedicine.medical_treatmentDopamineLongevityPharmaceutical SciencePharmacologyNeuroprotectionAntioxidants03 medical and health scienceschemistry.chemical_compoundGene Knockout Techniques0302 clinical medicineDopamineStress PhysiologicalDrug DiscoverymedicineAnimalsHumansReceptorCaenorhabditis elegansCaenorhabditis elegans Proteins030304 developmental biologyPharmacologychemistry.chemical_classification0303 health sciencesReactive oxygen speciesChemistryReceptors Dopamine D2Receptors Dopamine D1Receptors Dopamine D3TriterpenesMolecular Docking SimulationComplementary and alternative medicineDopamine receptor030220 oncology & carcinogenesisMutationMolecular MedicineSerotoninTroloxReactive Oxygen Speciesmedicine.drugSignal TransductionPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

The triterpenoid ursolic acid ameliorates stress in Caenorhabditis elegans by affecting the depression-associated genes skn-1 and prdx2.

2021

Abstract Introduction Depression is one of the leading causes of death worldwide. Lower antioxidant concentrations and increased oxidative stress levels contribute to the development of depression. Effective and tolerable medications are urgently needed. Nrf2 and PRDX2 are promising targets in the treatment of oxidative stress and, therefore, promising for the development of novel antidepressants. Ursolic acid (UA), a natural triterpenoid found in various plants is known to exert neuroprotective and antioxidant effects. Skn-1 (which corresponds to human Nrf2) and prdx2 deficient mutants of the nematode Caenorhabditis elegans are suitable models to study the effect of UA on these targets. Ad…

Antioxidantmedicine.medical_treatmentPharmaceutical SciencePharmacologymedicine.disease_causeProtective AgentsNeuroprotectionAntioxidants03 medical and health scienceschemistry.chemical_compound0302 clinical medicineUrsolic acidStress PhysiologicalDrug DiscoveryAdaptogenmedicineAnimalsCaenorhabditis elegansCaenorhabditis elegans ProteinsCaenorhabditis elegans030304 developmental biologyPharmacologychemistry.chemical_classification0303 health sciencesReactive oxygen speciesbiologyDepressionPeroxiredoxinsbiology.organism_classificationAntidepressive AgentsTriterpenesDNA-Binding ProteinsMolecular Docking SimulationOxidative StressComplementary and alternative medicinechemistryGene Expression Regulation030220 oncology & carcinogenesisMutationMolecular MedicineReactive Oxygen SpeciesJugloneOxidative stressTranscription FactorsPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

Design of new DNA-interactive agents by molecular docking and QSPR approach

2010

The design of new series of pyrrolo-pyrimidine derivatives, further annelated with a third heterocycle of different size, which also present several chain shape moieties of variable length and with different physico-chemical character, is reported. In this contribution we showed that the combination of docking-based and QSPR-based methods could lead to good models for ligand-DNA interaction prediction. By means of these computational approaches on 360 proposed inhibitors, we were able to select the most promising candidates as DNA-interactive drugs potentially endowed with antitumor activity.

Antitumor activitylcsh:QD241-441Quantitative structure–activity relationshipchemistry.chemical_compoundlcsh:Organic chemistryChemistryOrganic ChemistryDNA-interactive agents molecular docking QSPRComputational biologyVariable lengthCombinatorial chemistrySettore CHIM/08 - Chimica FarmaceuticaDNA
researchProduct

The biomaterial polyphosphate blocks stoichiometric binding of the SARS-CoV-2 S-protein to the cellular ACE2 receptor

2020

The effect of the polyanionic polymer of inorganic polyphosphate (polyP) involved in innate immunity on the binding of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to the cellular ACE2 receptor was studied. The RBD surface comprises a basic amino acid stretch of four arginine residues which interact with the physiological polyP (polyP40) and polyP3. Subsequently, the interaction of RBD with ACE2 is sensitively inhibited. After the chemical modification of arginine, an increased inhibition by polyP, at a 1 : 1 molar ratio (polyP : RBP), is measured already at 0.1 μg mL−1. Heparin was ineffective. The results suggest a potential therapeutic benefit of polyP against SARS-C…

ArgininePolymersBiomedical EngineeringAntiviral Agents03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePolyphosphatesotorhinolaryngologic diseasesmedicineHumansGeneral Materials ScienceReceptor030304 developmental biologychemistry.chemical_classification0303 health sciencesInnate immune systemBinding SitesChemistryPolyphosphateBiomaterialChemical modificationHeparinPolyelectrolytesdigestive system diseases3. Good healthAmino acidMolecular Docking SimulationBiochemistry030220 oncology & carcinogenesisSpike Glycoprotein CoronavirusAngiotensin-Converting Enzyme 2medicine.drugProtein BindingBiomaterials Science
researchProduct

Discovery of benzimidazole-based Leishmania mexicana cysteine protease CPB2.8ΔCTE inhibitors as potential therapeutics for leishmaniasis

2018

Abstract: Chemotherapy is currently the only effective approach to treat all forms of leishmaniasis. However, its effectiveness is severely limited due to high toxicity, long treatment length, drug resistance, or inadequate mode of administration. As a consequence, there is a need to identify new molecular scaffolds and targets as potential therapeutics for the treatment of this disease. We report a small series of 1,2‐substituted‐1H‐benzo[d]imidazole derivatives (9ad) showing affinity in the submicromolar range (Ki = 0.150.69 μM) toward Leishmania mexicanaCPB2.8ΔCTE, one of the more promising targets for antileishmanial drug design. The compounds confirmed activity in vitro against intrace…

BenzimidazoleCell SurvivalIn silicoLeishmania mexicanaAntiprotozoal AgentsDrug Evaluation PreclinicalProtozoan ProteinsDrug resistanceCysteine Proteinase InhibitorsPharmacologyAntileishmanial agents Benzimidazole derivatives Docking studies In silico profiling Leishmania mexicanaCPB2.8 Biochemistry Molecular Medicine01 natural sciencesBiochemistryLeishmania mexicanaCell LineInhibitory Concentration 50chemistry.chemical_compoundCysteine ProteasesDrug DiscoverymedicineHumansAmastigoteLeishmaniasisBiologyEnzyme AssaysPharmacologyBinding Sitesbiology010405 organic chemistryChemistryPharmacology. TherapyOrganic ChemistryHydrogen BondingLeishmaniasisbiology.organism_classificationmedicine.diseaseLeishmaniaProtein Structure Tertiary0104 chemical sciencesMolecular Docking Simulation010404 medicinal & biomolecular chemistryChemistryMolecular MedicineBenzimidazolesHuman medicineLeishmania infantumChemical biology and drug design
researchProduct

A Practical Perspective: The Effect of Ligand Conformers on the Negative Image-Based Screening.

2019

Negative image-based (NIB) screening is a rigid molecular docking methodology that can also be employed in docking rescoring. During the NIB screening, a negative image is generated based on the target protein’s ligand-binding cavity by inverting its shape and electrostatics. The resulting NIB model is a drug-like entity or pseudo-ligand that is compared directly against ligand 3D conformers, as is done with a template compound in the ligand-based screening. This cavity-based rigid docking has been demonstrated to work with genuine drug targets in both benchmark testing and drug candidate/lead discovery. Firstly, the study explores in-depth the applicability of different ligand 3D conformer…

Binding SitesCyclooxygenase 2 Inhibitorsstructure-based drug discoveryrigid dockingmolecular dockingnegative image-based (NIB) screeningvirtual screeningArticlenegative image-based rescoring (R-NiB)cyclooxygenase-2 (COX-2)Molecular Docking SimulationCyclooxygenase 2Drug DiscoveryHumansdocking rescoringProtein BindingInternational journal of molecular sciences
researchProduct

De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments.

2013

Protein kinases constitute an attractive family of enzyme targets with high relevance to cell and disease biology. Small molecule inhibitors are powerful tools to dissect and elucidate the function of kinases in chemical biology research and to serve as potential starting points for drug discovery. However, the discovery and development of novel inhibitors remains challenging. Here, we describe a structure-based de novo design approach that generates novel, hinge-binding fragments that are synthetically feasible and can be elaborated to small molecule libraries. Starting from commercially available compounds, core fragments were extracted, filtered for pharmacophoric properties compatible w…

Binding SitesMolecular StructureProtein ConformationIntracellular Signaling Peptides and ProteinsArticlesProtein Serine-Threonine KinasesCrystallography X-RayMAP Kinase Kinase KinasesImmediate-Early ProteinsCSK Tyrosine-Protein KinaseMolecular Docking SimulationSmall Molecule Librariessrc-Family KinasesDrug DesignComputer SimulationProtein Kinase InhibitorsACS chemical biology
researchProduct

Development of peptidomimetic boronates as proteasome inhibitors.

2013

Abstract Proteasome inhibition has emerged over the past decade as an effective therapeutic approach for the treatment of hematologic malignancies. It is a multicatalytic complex, whose proteolytic activity relies in three types of subunits: chymotrypsin-like (β5), trypsin-like (β2) and caspase-like (β1). Most important for the development of effective antitumor agents is the inhibition of the β5 subunits. In this context, the dipeptide boronate bortezomib (Velcade ® ) represents the first proteasome inhibitor approved by the FDA and the lead compound in drug discovery. This paper describes the synthesis and biological evaluation of a series of conformationally constrained pseudopeptide bor…

Boron CompoundsModels MolecularProteasome Endopeptidase ComplexPeptidomimeticStructure-activity relationshipsPeptidomimetic boronates; Proteasome inhibitors; Docking studiesPharmacologyPeptidomimetic boronateDockingchemistry.chemical_compoundStructure-Activity RelationshipDrug DiscoverymedicineHumansProteasome inhibitorPharmacologyDipeptideDose-Response Relationship DrugMolecular StructureDrug discoveryBortezomibOrganic ChemistryGeneral MedicineBiochemistrychemistryProteasomeDocking (molecular)Proteasome inhibitorPeptidomimeticsLead compoundProteasome Inhibitorsmedicine.drugEuropean journal of medicinal chemistry
researchProduct

A Definitive Pharmacophore Modelling Study on CDK2 ATP Pocket Binders: Tracing the Path of New Virtual High-Throughput Screenings

2020

Cyclin Dependent Kinases-2 (CDK2) are members of serine/threonine protein kinases family. They play an important role in the regulation events of the eukaryotic cell division cycle, especially during the G1 to S phase transition. Experimental evidence indicate that excessive expression of CDK2s should cause abnormal cell cycle regulation. Therefore, since a long time, CDK2s have been considered potential therapeutic targets for cancer therapy. In this work, onehundred and forty-nine complexes of inhibitors bound in the CDK2-ATP pocket were submitted to short MD simulations (10ns) and free energy calculation. Comparison with experimental data (K&lt;sub&gt;i&lt;/sub&gt;, K&lt;sub&gt;d&lt;/su…

CDK20301 basic medicineComputer scienceATP pocketCancer therapyComputational biologyMolecular dynamicsTracingCommon hits approachInhibitory Concentration 5003 medical and health sciencesMolecular dynamicsAdenosine Triphosphate0302 clinical medicineNeoplasmsDrug DiscoveryHumansProtein Kinase InhibitorsThroughput (business)Eukaryotic cellMM-GBSABinding SitesbiologyCyclin-Dependent Kinase 2Cyclin-dependent kinase 2High-Throughput Screening AssaysMolecular Docking Simulation030104 developmental biology030220 oncology & carcinogenesisPharmacophore modellingPath (graph theory)biology.proteinPharmacophoreProtein BindingCurrent Drug Discovery Technologies
researchProduct