Search results for " Expression"

showing 10 items of 4731 documents

Expression of miR159 Is Altered in Tomato Plants Undergoing Drought Stress.

2019

In a scenario of global climate change, water scarcity is a major threat for agriculture, severely limiting crop yields. Therefore, alternatives are urgently needed for improving plant adaptation to drought stress. Among them, gene expression reprogramming by microRNAs (miRNAs) might offer a biotechnologically sound strategy. Drought-responsive miRNAs have been reported in many plant species, and some of them are known to participate in complex regulatory networks via their regulation of transcription factors involved in water stress signaling. We explored the role of miR159 in the response of Solanum lycopersicum Mill. plants to drought stress by analyzing the expression of sly-miR159 and …

0106 biological sciences0301 basic medicineMYB transcription factorsSequeresDrought tolerance<i>P5CS</i>Plant Sciencedrought01 natural sciencesArticle03 medical and health sciencesSolanum lycopersicumGene expressionTomàquetsColorado potato beetleputrescineMYBprolineTranscription factorEcology Evolution Behavior and SystematicsEcologybiologybusiness.industryColorado potato beetle<i>Solanum lycopersicum</i>fungiBotanyfood and beveragesP5CSbiology.organism_classificationmiR159Biotechnology030104 developmental biologyQK1-989RNASolanumbusinessTranscription Factor GeneSolanaceae010606 plant biology & botanyPlants (Basel, Switzerland)
researchProduct

Unravelling the biosynthesis of pyriculol in the rice blast fungus Magnaporthe oryzae

2017

Pyriculol was isolated from the rice blast fungus Magnaporthe oryzae and found to induce lesion formation on rice leaves. These findings suggest that it could be involved in virulence. The gene MoPKS19 was identified to encode a polyketide synthase essential for the production of the polyketide pyriculol in the rice blast fungus M. oryzae. The transcript abundance of MoPKS19 correlates with the biosynthesis rate of pyriculol in a time-dependent manner. Furthermore, gene inactivation of MoPKS19 resulted in a mutant unable to produce pyriculol, pyriculariol and their dihydro derivatives. Inactivation of a putative oxidase-encoding gene MoC19OXR1, which was found to be located in the genome cl…

0106 biological sciences0301 basic medicineMagnaportheMutantSecondary Metabolism01 natural sciencesMicrobiologyMicrobiology03 medical and health sciencesPolyketideGene Expression Regulation FungalPolyketide synthaseAxenicGenePlant DiseasesRegulation of gene expressionbiologyFungal geneticsfood and beveragesOryzabiology.organism_classificationPlant LeavesMagnaporthe030104 developmental biologyBenzaldehydesMultigene FamilyPolyketidesbiology.proteinFatty AlcoholsPolyketide SynthasesTranscription FactorsResearch Article010606 plant biology & botanyMicrobiology
researchProduct

Transcriptomic responses to biotic stresses in Malus x domestica: a meta-analysis study.

2017

AbstractRNA-Seq analysis is a strong tool to gain insight into the molecular responses to biotic stresses in plants. The objective of this work is to identify specific and common molecular responses between different transcriptomic data related to fungi, virus and bacteria attacks in Malus x domestica. We analyzed seven transcriptomic datasets in Malus x domestica divided in responses to fungal pathogens, virus (Apple Stem Grooving Virus) and bacteria (Erwinia amylovora). Data were dissected using an integrated approach of pathway- and gene- set enrichment analysis, Mapman visualization tool, gene ontology analysis and inferred protein-protein interaction network. Our meta-analysis revealed…

0106 biological sciences0301 basic medicineMalusKnowledge BasesArabidopsislcsh:MedicineSecondary MetabolismErwiniaGenes Plant01 natural sciencesArticleTranscriptome03 medical and health sciencesPlant Growth RegulatorsGene Expression Regulation PlantStress PhysiologicalSettore AGR/07 - Genetica AgrariaProtein Interaction Mapslcsh:ScienceSecondary metabolismGeneCrosses GeneticPlant ProteinsGeneticsMultidisciplinarybiologyGene Expression Profilinglcsh:RfungiMalus transcriptomic biotic stressfood and beveragesBiotic stressbiology.organism_classificationSettore AGR/03 - Arboricoltura Generale E Coltivazioni ArboreeGene expression profiling030104 developmental biologyGene OntologyMalustranscriptomic responses biotic stress meta-analysis RNA-seq plantsInactivation Metaboliclcsh:QTranscriptomeApple stem grooving virus010606 plant biology & botanyTranscription FactorsScientific reports
researchProduct

Phosphoglycerate dehydrogenase genes differentially affect Arabidopsis metabolism and development.

2021

[EN] Unlike animals, plants possess diverse L-serine (Ser) biosynthetic pathways. One of them, the Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been recently described as essential for embryo, pollen and root development, and required for ammonium and sulfur assimilation. The first and rate limiting step of PPSB is the reaction catalyzed by the enzyme phosphoglycerate dehydrogenase (PGDH). In Arabidopsis, the PGDH family consists of three genes, PGDH1, PGDH2 and PGDH3. PGDH1 is characterized as being the essential gene of the family. However, the biological significance of PGDH2 and PGDH3 remains unknown. In this manuscript, we have functionally characterized PGDH2 and PGDH3. Ph…

0106 biological sciences0301 basic medicineMutantArabidopsisPlant ScienceGenes Plant01 natural sciencesGene Expression Regulation EnzymologicSerine03 medical and health scienceschemistry.chemical_compoundSulfur assimilationBiosynthesisGene Expression Regulation PlantArabidopsisGeneticsSerinePhosphoglycerate dehydrogenaseGenePhosphoglycerate DehydrogenasePSPbiologyGeneral MedicinePhosphorylated pathway of serine biosynthesisbiology.organism_classificationBiosynthetic Pathways030104 developmental biologyPGDHBiochemistrychemistryEssential geneFISIOLOGIA VEGETALPhosphoserine phosphataseAgronomy and Crop Science010606 plant biology & botanyPlant science : an international journal of experimental plant biology
researchProduct

Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor

2018

[EN] Copper is an essential element in plants. When scarce, copper is acquired from extracellular environment or remobilized from intracellular sites, through members of the high affinity copper transporters family COPT located at the plasma membrane and internal membrane, respectively. Here, we show that COPT3 is an intracellular copper transporter, located at a compartment of the secretory pathway, that is mainly expressed in pollen grains and vascular bundles. Contrary to the COPT1 plasma membrane member, the expression of the internal COPT3 membrane transporter was higher at 12 h than at 0 h of a neutral photoperiod day under copper deficiency. The screening of a library of conditionall…

0106 biological sciences0301 basic medicineMutantchemistry.chemical_elementPlant Sciencelcsh:Plant culture01 natural sciencesTCP1603 medical and health sciencesTranscriptional regulationGene expressionBIOQUIMICA Y BIOLOGIA MOLECULARExtracellularmedicinelcsh:SB1-1110COPT3transcriptional regulationheavy metalsTranscription factorSecretory pathwayOriginal ResearchCopper transportmedicine.diseaseCopperCell biology030104 developmental biologyHeavy metalschemistrycopper transportCopper deficiencyIntracellular010606 plant biology & botanyFrontiers in Plant Science
researchProduct

Oxylipin mediated stress response of a miraculin-like protease inhibitor in Hexanoic acid primed eggplant plants infested by Colorado potato beetle

2017

Insect-plant interactions are governed by a complex equilibrium between the mechanisms through which plant recognize insect attack and orchestrate downstream signaling events that trigger plant defense responses, and the mechanisms by which insects overcome plant defenses. Due to this tight and dynamic interplay, insight into the nature of the plant defense response can be gained by analyzing changes in the insect herbivores digestive system upon plant feeding. In this work we have identified a Solanum melongena miraculin-like protease inhibitor in the midgut juice of Colorado potato larvae feeding on eggplant plants treated with the natural inducer of plant defenses hexanoic acid. We analy…

0106 biological sciences0301 basic medicinePhysiologyMiraculinPlant ScienceEggplant01 natural sciences03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation PlantBotanyPlant defense against herbivoryAnimalsColorado potato beetleProtease InhibitorsOxylipinsSolanum melongenaCaproatesMiraculin-like proteinHexanoic acidbiologyColorado potato beetlefungiPlant physiologyfood and beveragesOxylipinbiology.organism_classificationCell biologyColeoptera030104 developmental biologychemistryDefense primingSolanumHexanoic acidAgronomy and Crop ScienceSolanaceae010606 plant biology & botany
researchProduct

NMD-Based Gene Regulation—A Strategy for Fitness Enhancement in Plants?

2019

Abstract Post-transcriptional RNA quality control is a vital issue for all eukaryotes to secure accurate gene expression, both on a qualitative and quantitative level. Among the different mechanisms, nonsense-mediated mRNA decay (NMD) is an essential surveillance system that triggers degradation of both aberrant and physiological transcripts. By targeting a substantial fraction of all transcripts for degradation, including many alternative splicing variants, NMD has a major impact on shaping transcriptomes. Recent progress on the transcriptome-wide profiling and physiological analyses of NMD-deficient plant mutants revealed crucial roles for NMD in gene regulation and environmental response…

0106 biological sciences0301 basic medicinePhysiologyNonsense-mediated decayMutantMRNA DecayPlant ScienceComputational biologyBiology01 natural sciencesTranscriptome03 medical and health sciencesSpecies SpecificityGene Expression Regulation PlantGene expressionPlant Physiological PhenomenaRegulation of gene expressionRNA quality controlGene Expression ProfilingAlternative splicingCell BiologyGeneral MedicinePlantsNonsense Mediated mRNA DecayAlternative Splicing030104 developmental biologyTranscriptome010606 plant biology & botanyPlant and Cell Physiology
researchProduct

Multifactorial and Species-Specific Feedback Regulation of the RNA Surveillance Pathway Nonsense-Mediated Decay in Plants

2018

Abstract Nonsense-mediated decay (NMD) is an RNA surveillance mechanism that detects aberrant transcript features and triggers degradation of erroneous as well as physiological RNAs. Originally considered to be constitutive, NMD is now recognized to be tightly controlled in response to inherent signals and diverse stresses. To gain a better understanding of NMD regulation and its functional implications, we systematically examined feedback control of the central NMD components in two dicot and one monocot species. On the basis of the analysis of transcript features, turnover rates and steady-state levels, up-frameshift (UPF) 1, UPF3 and suppressor of morphological defects on genitalia (SMG)…

0106 biological sciences0301 basic medicinePhysiologyRNA StabilityNonsense-mediated decayArabidopsisPlant ScienceBiology01 natural scienceslaw.inventionDephosphorylation03 medical and health sciencesSpecies SpecificityGene Expression Regulation PlantlawArabidopsis thalianaFeedback PhysiologicalRegulation of gene expressionArabidopsis ProteinsMechanism (biology)RNACell BiologyGeneral MedicineRNA surveillancebiology.organism_classificationNonsense Mediated mRNA DecayCell biology030104 developmental biologyRNA PlantSuppressorCarrier ProteinsRNA Helicases010606 plant biology & botanyPlant and Cell Physiology
researchProduct

Phosphoglycerate Kinases Are Co-Regulated to Adjust Metabolism and to Optimize Growth

2017

[EN] In plants, phosphoglycerate kinase (PGK) converts 1,3-bisphosphoglycerate into 3-phosphoglycerate in glycolysis but also participates in the reverse reaction in gluconeogenesis and the Calvin-Benson cycle. In the databases, we found three genes that encode putative PGKs. Arabidopsis (Arabidopsis thaliana) PGK1 was localized exclusively in the chloroplasts of photosynthetic tissues, while PGK2 was expressed in the chloroplast/plastid of photosynthetic and nonphotosynthetic cells. PGK3 was expressed ubiquitously in the cytosol of all studied cell types. Measurements of carbohydrate content and photosynthetic activities in PGK mutants and silenced lines corroborated that PGK1 was the phot…

0106 biological sciences0301 basic medicinePhysiologyResearch Articles - Focus IssueMutantArabidopsisPlant ScienceGlyceric AcidsPlant Roots01 natural sciencesChloroplastGene03 medical and health sciencesCytosolGene Expression Regulation PlantArabidopsisGeneticsBIOQUIMICA Y BIOLOGIA MOLECULARMetabolomicsArabidopsis thalianaBamboo-Mosaic-VirusPlastidPhosphoglycerate kinaseGas-ChromatographybiologyArabidopsis ProteinsWild typefood and beveragesMetabolismArabidopsis-ThalianaPlant Components AerialPlants Genetically Modifiedbiology.organism_classificationHelianthus-Annuus L.3-Phosphoglycerate kinaseChloroplastPhosphoglycerate Kinase030104 developmental biologyBiochemistryMultigene FamilyMutationNicotiana-BenthamianaFISIOLOGIA VEGETALPlastics010606 plant biology & botanyPhosphorylating glyceraldehyde-3-phosphate dehydrogenaseGastric-Cancer
researchProduct

Tonoplast aquaporins facilitate lateral root emergence\ud

2016

Pôle SPE IPM UB; International audience; Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip mutants showed no or minor reduction in growth of the mai…

0106 biological sciences0301 basic medicinePhysiology[SDV]Life Sciences [q-bio]MeristemPopulationArabidopsisMorphogenesisAquaporinPlant ScienceAquaporinsPlant Roots01 natural sciences03 medical and health sciencesGene Expression Regulation PlantArabidopsisGeneticsProtein IsoformsArabidopsis thaliana[SDV.BV]Life Sciences [q-bio]/Vegetal Biologyeducationeducation.field_of_studyMicroscopy ConfocalWater transportbiologyurogenital systemArabidopsis ProteinsReverse Transcriptase Polymerase Chain ReactionGene Expression ProfilingLateral rootQKGene Expression Regulation DevelopmentalWaterBiological TransportArticlesMeristemPlants Genetically Modifiedbiology.organism_classificationMolecular biologyCell biology030104 developmental biologyMutationVacuoles[SDE]Environmental Sciences010606 plant biology & botany
researchProduct