Search results for " General"

showing 10 items of 33759 documents

Unusual domain-wall motion in ferromagnetic semiconductor films with tetragonal anisotropy

2009

International audience; Magnetic field-driven domain-wall propagation in the flow regime is investigated in (Ga, Mn) As ferromagnetic semiconductor layers. Square-shape magnetic domains with an unexpected orientation of their edges, at pi/8 with respect to the anisotropy axes, are found. This is shown to arise from the effect of tetragonal magnetic anisotropy on domain-wall dynamics. Using a one-dimensional model for domain-wall motion and modeling domain growth by contour dynamics the shape and orientation of domains and their field range for existence are well reproduced. These results point to the key role of the vectorial nature of the order parameter in the dynamics of ferromagnetic do…

010302 applied physicsPhysicsCondensed matter physicsMagnetic domainDemagnetizing fieldCondensed Matter PhysicsMagnetocrystalline anisotropy01 natural sciencesMagnetic susceptibilityElectronic Optical and Magnetic MaterialsMagnetic anisotropyDomain wall (magnetism)Magnetic shape-memory alloy0103 physical sciences[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]Single domain010306 general physicsPhysical Review B
researchProduct

Electromagnetically induced switching of ferroelectric thin films

2007

We analyze the interaction of an electromagnetic spike (one cycle) with a thin layer of ferroelectric medium with two equilibrium states. The model is the set of Maxwell equations coupled to the undamped Landau-Khalatnikov equation, where we do not assume slowly varying envelopes. From linear-scattering theory, we show that low-amplitude pulses can be completely reflected by the medium. Large-amplitude pulses can switch the ferroelectric. Using numerical simulations and analysis, we study this switching for long and short pulses, estimate the switching times, and provide useful information for experiments.

010302 applied physicsPhysicsCondensed matter physicsScatteringNumerical analysisThin layerFOS: Physical sciencesPattern Formation and Solitons (nlin.PS)Condensed Matter Physics01 natural sciencesFerroelectricityNonlinear Sciences - Pattern Formation and SolitonsElectronic Optical and Magnetic Materialssymbols.namesakeAmplitudeMaxwell's equations0103 physical sciencessymbolsFerroelectric thin filmsThin film010306 general physicsComputingMilieux_MISCELLANEOUS
researchProduct

Switching by Domain-Wall Automotion in Asymmetric Ferromagnetic Rings

2017

A ring-shaped magnetic logic device offers two vortex states (clockwise and counterclockwise) to encode bits, with relative stability against external magnetic fields. The dynamics of magnetization switching in such structures, though, still need unraveling. The authors present direct experimental visualization of reproducible, robust switching in magnetic rings via domain-wall automotion, which does not require an applied field. Simulations reveal that annihilation of domain walls through automotion always occurs, with the detailed topology of the walls only influencing the dynamics locally, in line with the experimental results.

010302 applied physicsPhysicsField (physics)Condensed matter physicsMagnetic logicGeneral Physics and AstronomyLarge scale facilities for research with photons neutrons and ions01 natural sciencesVortexMagnetic fieldMagnetizationDomain wall (magnetism)Ferromagnetism0103 physical sciences010306 general physicsTopology (chemistry)Physical Review Applied
researchProduct

Transport properties of Bi2Sr2Ca2Cu3O10+δ Bicrystal Grain Boundary Josephson Junctions and SQUIDs

1996

Josephson junctions and SQUIDs on 36.8° SrTiO 3 bicrystal substrates were prepared from epitaxial Bi 2 Sr 2 Ca 2 Cu 3 O 10+δ thin films with critical temperatures around 95K. The current-voltage characteristics are well described by the resistively and capacitively shunted junction model. I c R n products of 50μV at 77K and 0.7mV at 4.2K have been reached. The I c (B) dependence is symmetric to B = 0 with an I c suppression of 90% in the first minimum. Nevertheless it turns out, that the junctions are inhomogeneous on a μm scale. SQUID modulations observed at 78K indicate a flux-voltage transfer function of 2.7μV/Φ 0 at this temperature.

010302 applied physicsPhysicsJosephson effectCondensed matter physicsGeneral Physics and AstronomyEpitaxy01 natural scienceslaw.inventionSQUIDlaw[PHYS.HIST]Physics [physics]/Physics archives0103 physical sciencesGrain boundaryThin film010306 general physics
researchProduct

Commissioning of the vacuum system of the KATRIN Main Spectrometer

2016

The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. An integral energy analysis will be performed by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m[superscript 3], and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips ha…

010302 applied physicsPhysicsLight nucleusPhysics - Instrumentation and DetectorsSpectrometerSpectrometersPhysics::Instrumentation and DetectorsVacuum-basedFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)01 natural sciencesEnergy analysisNuclear physics0103 physical sciencesEnergy spectrumGas systems and purificationNeutrino detectorsddc:620010306 general physicsInstrumentationMathematical PhysicsEngineering & allied operationsKATRINdetectors
researchProduct

Multiscale model approach for magnetization dynamics simulations

2016

Simulations of magnetization dynamics in a multiscale environment enable the rapid evaluation of the Landau-Lifshitz-Gilbert equation in a mesoscopic sample with nanoscopic accuracy in areas where such accuracy is required. We have developed a multiscale magnetization dynamics simulation approach that can be applied to large systems with spin structures that vary locally on small length scales. To implement this, the conventional micromagnetic simulation framework has been expanded to include a multiscale solving routine. The software selectively simulates different regions of a ferromagnetic sample according to the spin structures located within in order to employ a suitable discretization…

010302 applied physicsPhysicsMesoscopic physicsMagnetization dynamicsCondensed Matter - Mesoscale and Nanoscale PhysicsScale (ratio)DiscretizationAttenuationFOS: Physical sciencesComputational Physics (physics.comp-ph)01 natural sciencesSpin waveMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesStatistical physics010306 general physicsPhysics - Computational PhysicsNanoscopic scaleSpin-½Physical Review B
researchProduct

Simulation and optimization of the implantation of holmium atoms into metallic magnetic microcalorimeters for neutrino mass determination experiments

2017

Abstract Several novel experiments designed to investigate the electron neutrino mass in the sub-eV region are based on the calorimetric measurement of the 163Ho electron capture spectrum. For this the 163Ho source, with a required activity of the order of 1 to 100 Bq , needs to be enclosed in the detector, having a volume smaller than 10 − 3 mm 3 . Ion implantation is presently considered to be the most reliable method to enclose this source in the detector homogeneously distributed in a well defined volume. We have investigated the distribution of implanted holmium ions in different target materials and for different implantation energies by means of Monte Carlo simulations based on the S…

010302 applied physicsPhysicsNuclear and High Energy PhysicsElectron captureMonte Carlo methodDetectorchemistry.chemical_element01 natural sciencesIonIon implantationchemistry0103 physical sciencesAtomic physicsNeutrino010306 general physicsHolmiumInstrumentationElectron neutrinoNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Hot-cavity studies for the Resonance Ionization Laser Ion Source

2016

International audience; The Resonance Ionization Laser Ion Source (RILIS) has emerged as an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability, and ability to ionize target elements efficiently and element selectively. GISELE is an off-line RILIS test bench to study the implementation of an on-line laser ion source at the GANIL separator facility. The aim of this project is to determine the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. The ion source geometry was tested in several configurations in order to find a solution with optimal ionization efficiency an…

010302 applied physicsPhysicsNuclear and High Energy PhysicsIon beamTitanium sapphire laser[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Ion gun7. Clean energy01 natural sciencesIon sourceAtmospheric-pressure laser ionizationHot cavityRadioactive Ion BeamWork function materialResonant Ionization Laser Ion SourceIon beam depositionIonization0103 physical sciencesPhysics::Accelerator PhysicsThermal emittanceAtomic physicsBeam emittance010306 general physicsInstrumentation
researchProduct

Radiation emission at channeling of electrons in a strained layer undulator crystal

2013

Abstract Experiments have been performed at the Mainz Microtron MAMI to explore the radiation emission spectra from a crystalline undulator at electron beam energies of 270 and 855 MeV. The epitaxially grown graded composition strained layer Si 1 - x Ge x undulator had 4-period with a period length λ u = 9.9 μ m . Spectra taken at the beam energy of 270 MeV at channeling in the undulating (110) planes exhibit a broad excess yield around the theoretically expected photon energies of 0.069 MeV, as compared with a flat silicon reference crystal. Model calculations on the basis of synchrotron-like radiation emission from finite single arc elements, taking into account also coherence effects, su…

010302 applied physicsPhysicsNuclear and High Energy PhysicsPhotonSiliconchemistry.chemical_elementElectronUndulator01 natural sciencesSpectral lineCrystalchemistry0103 physical sciencesCathode rayPhysics::Accelerator PhysicsAtomic physicsNuclear Experiment010306 general physicsInstrumentationMicrotronNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Broadband microwave emission spectrum associated with kinetic instabilities in minimum-B ECR plasmas

2017

Plasmas of electron cyclotron resonance ion sources (ECRISs) are prone to kinetic instabilities due to the resonant heating mechanism resulting in anisotropic electron velocity distribution. Frequently observed periodic oscillations of extracted ion beam current in the case of high plasma heating power and/or strong magnetic field have been proven to be caused by cyclotrontype instabilities leading to a notable reduction and temporal variation of highly charged ion production. Thus, investigations of such instabilities and techniques for their suppression have become important topics in ECRIS research. The microwave emission caused by the instabilities contains information on the electron e…

010302 applied physicsPhysicsRange (particle radiation)microwave sourcesIon sourcesIon beamta114Highly charged ionPlasmaAstrophysics::Cosmology and Extragalactic Astrophysicsplasma instabilitiesmagnetic fieldsCondensed Matter PhysicsPlasma oscillationmagneettikentät01 natural sciences7. Clean energyElectron cyclotron resonanceIonPhysics::Plasma Physicsmicrowave spectra0103 physical sciencesAtomic physics010306 general physicsMicrowave
researchProduct