Search results for " IMAGE"

showing 10 items of 3936 documents

Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks

2020

Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…

010504 meteorology & atmospheric sciencesComputer sciencehyperspectral image classificationScience0211 other engineering and technologiesgeoinformatics02 engineering and technologyneuroverkot01 natural sciencesConvolutional neural networkpuulajitPARAMETERSSet (abstract data type)LIDARFORESTSClassifier (linguistics)021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryDeep learningspektrikuvausQHyperspectral imagingdeep learningPattern recognition15. Life on landmiehittämättömät ilma-aluksetPerceptron113 Computer and information sciencesClass (biology)drone imagery3d convolutional neural networksmetsänarviointiMACHINEkoneoppiminentree species classification3D convolutional neural networksGeneral Earth and Planetary SciencesRGB color modelArtificial intelligencekaukokartoitusbusinesshyperspectral image classificationRemote Sensing
researchProduct

Estimating Missing Information by Cluster Analysis and Normalized Convolution

2018

International audience; Smart city deals with the improvement of their citizens' quality of life. Numerous ad-hoc sensors need to be deployed to know humans' activities as well as the conditions in which these actions take place. Even if these sensors are cheaper and cheaper, their installation and maintenance cost increases rapidly with their number. We propose a methodology to limit the number of sensors to deploy by using a standard clustering technique and the normalized convolution to estimate environmental information whereas sensors are actually missing. In spite of its simplicity, our methodology lets us provide accurate assesses.

010504 meteorology & atmospheric sciencesComputer sciencemedia_common.quotation_subjectReal-time computingEnergy Engineering and Power Technology02 engineering and technologyIterative reconstructionsmart city dealsCluster (spacecraft)01 natural sciencesIndustrial and Manufacturing Engineeringnormalized convolutionstandard clustering technique[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]ConvolutionArtificial IntelligenceSmart city11. Sustainability0202 electrical engineering electronic engineering information engineeringLimit (mathematics)SimplicityCluster analysisInstrumentationad-hoc sensors0105 earth and related environmental sciencesmedia_commonSettore INF/01 - InformaticaRenewable Energy Sustainability and the EnvironmentComputer Science Applications1707 Computer Vision and Pattern Recognitionenvironmental informationmissing informationComputer Networks and CommunicationKernel (image processing)020201 artificial intelligence & image processingcluster analysis2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)
researchProduct

Efficient remote sensing image classification with Gaussian processes and Fourier features

2017

This paper presents an efficient methodology for approximating kernel functions in Gaussian process classification (GPC). Two models are introduced. We first include the standard random Fourier features (RFF) approximation into GPC, which largely improves the computational efficiency and permits large scale remote sensing data classification. In addition, we develop a novel approach which avoids randomly sampling a number of Fourier frequencies, and alternatively learns the optimal ones using a variational Bayes approach. The performance of the proposed methods is illustrated in complex problems of cloud detection from multispectral imagery.

010504 meteorology & atmospheric sciencesContextual image classificationComputer scienceMultispectral imageData classification0211 other engineering and technologiesSampling (statistics)02 engineering and technology01 natural sciencessymbols.namesakeBayes' theoremFourier transformKernel (statistics)symbolsGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

SVM-based classification of High resolution Urban Satellites Images using Dense SURF and Spectral Information

2018

Remote-sensing focusing on image classification knows a large progress and receives the attention of the remote-sensing community day by day. Combining many kinds of extracted features has been successfully applied to High resolution urban satellite images using support vector machine (SVM). In this paper, we present a methodology that is promoting a performed classification by using pixel-wise SURF description features combined with spectral information in Cielab space for the first time on common scenes of urban imagery. The proposed method gives a promising classification accuracy when compared with the two types of features used separately.

010504 meteorology & atmospheric sciencesContextual image classificationComputer sciencebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION0211 other engineering and technologiesHigh resolutionPattern recognition02 engineering and technologySpace (commercial competition)01 natural sciencesSupport vector machineSatelliteArtificial intelligencebusiness021101 geological & geomatics engineering0105 earth and related environmental sciencesProceedings of the 12th International Conference on Intelligent Systems: Theories and Applications
researchProduct

SAR Image Classification Combining Structural and Statistical Methods

2011

The main objective of this paper is to develop a new technique of SAR image classification. This technique combines structural parameters, including the Sill, the slope, the fractal dimension and the range, with statistical methods in a supervised image classification. Thanks to the range parameter, we define the suitable size of the image window used in the proposed approach of supervised image classification. This approach is based on a new way of characterising different classes identified on the image. The first step consists in determining relevant area of interest. The second step consists in characterising each area identified, by a matrix. The last step consists in automating the pr…

010504 meteorology & atmospheric sciencesContextual image classificationbusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONProcess (computing)Pattern recognition02 engineering and technology01 natural sciencesFractal dimensionImage (mathematics)Range (mathematics)Matrix (mathematics)Fractal[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV][ INFO.INFO-TI ] Computer Science [cs]/Image Processing0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceVariogrambusinessComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesMathematics
researchProduct

Understanding deep learning in land use classification based on Sentinel-2 time series

2020

AbstractThe use of deep learning (DL) approaches for the analysis of remote sensing (RS) data is rapidly increasing. DL techniques have provided excellent results in applications ranging from parameter estimation to image classification and anomaly detection. Although the vast majority of studies report precision indicators, there is a lack of studies dealing with the interpretability of the predictions. This shortcoming hampers a wider adoption of DL approaches by a wider users community, as model’s decisions are not accountable. In applications that involve the management of public budgets or policy compliance, a better interpretability of predictions is strictly required. This work aims …

010504 meteorology & atmospheric sciencesEnvironmental economicsComputer scienceProcess (engineering)0211 other engineering and technologieslcsh:MedicineClimate changeContext (language use)02 engineering and technology01 natural sciencesArticleRelevance (information retrieval)lcsh:Science021101 geological & geomatics engineering0105 earth and related environmental sciencesInterpretabilityMultidisciplinaryLand useContextual image classificationbusiness.industryDeep learninglcsh:RClimate-change policy15. Life on landComputer scienceData scienceEnvironmental sciencesEnvironmental social sciences13. Climate actionlcsh:QAnomaly detectionArtificial intelligencebusinessCommon Agricultural PolicyAgroecologyScientific Reports
researchProduct

Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis

2015

In this paper we present an approach to perform relative spectral alignment between optical cross-sensor acquisitions. The proposed method aims at projecting the images from two different and possibly disjoint input spaces into a common latent space, in which standard change detection algorithms can be applied. The system relies on the regularized kernel canonical correlation analysis transformation (kCCA), which can accommodate nonlinear dependencies between pixels by means of kernel functions. To learn the projections, the method employs a subset of samples belonging to the unchanged areas or to uninteresting radiometric differences. Since the availability of ground truth information to p…

010504 meteorology & atmospheric sciencesFeature extraction0211 other engineering and technologiesRelative spectral alignment02 engineering and technology3107 Atomic and Molecular Physics and Optics01 natural sciencesCross-sensorCanonical correlation analysis1706 Computer Science Applications910 Geography & travelComputers in Earth SciencesEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsGround truthbusiness.industry1903 Computers in Earth SciencesKernel methodsPattern recognitionReal imageAtomic and Molecular Physics and OpticsComputer Science Applications10122 Institute of GeographyTransformation (function)Kernel methodChange detectionFeature extraction2201 Engineering (miscellaneous)Artificial intelligencebusinessCanonical correlationChange detectionCurse of dimensionalityISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-easte…

2016

This study aims at evaluating the performance of the Maximum Entropy method in assessing landslide susceptibility, exploiting topographic and multispectral remote sensing predictors. We selected the catchment of the Giampilieri stream, which is located in the north-eastern sector of Sicily (southern Italy), as test site. On 1 October 2009, a storm rainfall triggered in this area hundreds of debris flow/avalanche phenomena causing extensive economical damage and loss of life. Within this area a presence-only-based statistical method was applied to obtain susceptibility models capable of distinguishing future activation sites of debris flow and debris slide, which where the main source of fai…

010504 meteorology & atmospheric sciencesGeography Planning and DevelopmentMultispectral imageLandslideLand cover010502 geochemistry & geophysics01 natural sciencesDebrisMultispectral pattern recognitionDebris flowAdvanced Spaceborne Thermal Emission and Reflection RadiometerEarth and Planetary Sciences (miscellaneous)Digital elevation modelGeology0105 earth and related environmental sciencesEarth-Surface ProcessesRemote sensingEarth Surface Processes and Landforms
researchProduct

Gas mass derived by infrasound and UV cameras: Implications for mass flow rate

2016

Abstract Mass Flow Rate is one of the most crucial eruption source parameter used to define magnitude of eruption and to quantify the ash dispersal in the atmosphere. However, this parameter is in general difficult to be derived and no valid technique has been developed yet to measure it in real time with sufficient accuracy. Linear acoustics has been applied to infrasonic pressure waves generated by explosive eruptions to indirectly estimate the gas mass erupted and then the mass flow rate. Here, we test on Stromboli volcano (Italy) the performance of such methodology by comparing the acoustic derived results with independent gas mass estimates obtained with UV cameras, and constraining th…

010504 meteorology & atmospheric sciencesInfrasoundMass flowVolcano acousticMagnitude (mathematics)ThrustGeophysicsMass flow rate010502 geochemistry & geophysics01 natural sciencesAtmosphereGeophysicsSulphur dioxide cameraThermal imagery13. Climate actionGeochemistry and PetrologyMass flow rateRange (statistics)WaveformGeology0105 earth and related environmental sciencesJournal of Volcanology and Geothermal Research
researchProduct

Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring

2020

Image processing entered the era of artificial intelligence, and machine learning algorithms emerged as attractive alternatives for time series data processing. Satellite image time series processing enables crop phenology monitoring, such as the calculation of start and end of season. Among the promising algorithms, Gaussian process regression (GPR) proved to be a competitive time series gap-filling algorithm with the advantage of, as developed within a Bayesian framework, providing associated uncertainty estimates. Nevertheless, the processing of time series images becomes computationally inefficient in its standard per-pixel usage, mainly for GPR training rather than the fitting step. To…

010504 meteorology & atmospheric sciencesMean squared errorComputer science0211 other engineering and technologiesImage processing02 engineering and technologycomputer.software_genre01 natural scienceslcsh:AgricultureKrigingTime series021101 geological & geomatics engineering0105 earth and related environmental sciences2. Zero hungerHyperparameterPixelSeries (mathematics)lcsh:SGaussian processes regressionSatellite Image Time SeriesData miningtime seriesSentinel-2optimizationAgronomy and Crop Sciencecomputercrop monitoringphenology indicatorsAgronomy
researchProduct