Search results for " Indirect"
showing 10 items of 174 documents
Pressure-induced band anticrossing in two adamantine ordered-vacancy compounds: CdGa2S4 and HgGa2S4
2021
Abstract This paper reports a joint experimental and theoretical study of the electronic band structure of two ordered-vacancy compounds with defect-chalcopyrite structure: CdGa2S4 and HgGa2S4. High-pressure optical-absorption experiments (up to around 17 GPa) combined with first-principles electronic band-structure calculations provide compelling evidence of strong nonlinear pressure dependence of the bandgap in both compounds. The nonlinear pressure dependence is well accounted for by the band anticrossing model that was previously established mostly for selenides with defect chalcopyrite structure. Therefore, our results on two sulfides with defect chalcopyrite structure under compressio…
Hall effect and electronic structure of films
2010
Abstract Tunneling experiments have shown that in order to retain half-metallicity at room temperature not only a large gap is required but also a Fermi energy considerably distant from the minority band edges. We correlate the position of the Fermi energy in the spin minority gap obtained from band structure calculations to Hall effect experiments. As a model system we chose Co 2 Fe x Mn 1 - x Si , where the Fermi energy was calculated to move from the valence band edge of the minority states to the conduction band edge with increasing x . On high quality laser ablated epitaxial films we observe a sign change of both the normal and the anomalous Hall effect with doping. The experimental da…
Band structure of indium selenide investigated by intrinsic photoluminescence under high pressure
2004
This paper reports on photoluminescence experiments in $n$-type indium selenide $(T=300\phantom{\rule{0.3em}{0ex}}\mathrm{K})$ under hydrostatic pressure up to 7 GPa at low and high excitation densities. Photoluminescence measurements at low excitation density exhibit a broad band around the energy of the direct band gap of $\mathrm{InSe}$ and with the same pressure dependence. The reversible increase of its linewidth above $1\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$ is associated to a direct-to-indirect band-gap crossover between valence band maxima. The reversible decrease of its intensity above $4\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$ is interpreted as evidence of a direct-to-indirect b…
Surface band-gap narrowing in quantized electron accumulation layers.
2010
An energy gap between the valence and the conduction band is the defining property of a semiconductor, and the gap size plays a crucial role in the design of semiconductor devices. We show that the presence of a two-dimensional electron gas near to the surface of a semiconductor can significantly alter the size of its band gap through many-body effects caused by its high electron density, resulting in a surface band gap that is much smaller than that in the bulk. Apart from reconciling a number of disparate previous experimental findings, the results suggest an entirely new route to spatially inhomogeneous band-gap engineering.
High-pressure structural, lattice dynamics, and electronic properties of beryllium aluminate studied from first-principles theory
2021
Abstract The present work reports the complete study of structural, vibrational, mechanical, and electronic properties of BeAl2O4 (known as Chrysoberyl) using first-principles computing methods. The calculated ground-state properties agree quite well with previous experiments. The computed phonon dispersion curves do not show imaginary frequencies confirming the dynamical stability. In addition, the calculated elastic constants also ensure the mechanical stability through fulfillment of mechanical stability criteria. Apart from that, the theoretically determined phonon frequencies agree quite well with previous Raman and infrared experiments at ambient conditions. Various thermodynamic prop…
Dipoles in 4,12,4-graphyne
2021
Abstract In present work, B-N pairs as dipole source were introduced into 4,12,4-graphyne. According to the density functional theory (DFT) simulations, the electronic configurations of the doped 4,12,4-graphyne systems were significantly modified owing to the built-in electric fields caused by the B-N dipoles. Different B-N concentrations and arrangements can alter the electronic structure of 4,12,4-graphyne. Consequently, an obvious in-plane piezoelectricity can also be induced. Moreover, the direct band gap can be delicately modulated from 150 meV to 660 meV at PBE level. The B-N dipoles can also greatly enhance the light absorption instead of shifting the absorption region. According to…
Charge transfer and tunable minority band gap at the Fermi energy of a quaternaryCo2(MnxTi1−x)GeHeusler alloy
2010
We investigate the distribution of element-specific magnetic moments and changes in the spin-resolved unoccupied density of states in a series of half-metallic ${\text{Co}}_{2}({\text{Mn}}_{x}{\text{Ti}}_{1\ensuremath{-}x})\text{Ge}$ Heusler alloys using x-ray magnetic circular dichroism. The Co and Mn magnetic moments are oriented parallel while a small Ti moment shows antiparallel to the mean magnetization. The element-specific magnetic moments remain almost independent on the composition. Therefore, a replacement of Ti by Mn results in an increase in magnetization. The increase in magnetization with increasing $x$ follows the Slater-Pauling rule. The Fermi level decreases with respect to…
Spectral and kinetic characteristics of pyroelectric luminescence in LiGaO2
2019
Abstract Pyroelectric luminescence was observed in noncentrosymmetrical crystal LiGaO2 with the direct band gap around 6 eV. For the first time spectral and kinetic characteristics of pyroelectric luminescence were obtained. The temporal structure of the PEL signal was determined as a sequence of pulses with duration not longer than several nanoseconds. This allowed proposing of the luminescence mechanism: in vacuum conditions in LiGaO2 crystal pyroelectric luminescence occurs inside the sample due to radiative recombination of electrons with the positively charged intrinsic luminescence centres.
Two-Dimensional Antimony Oxide
2020
Two-dimensional (2D) antimony, so-called antimonene, can form antimonene oxide when exposed to air. We present different types of single- and few-layer antimony oxide structures, based on density functional theory (DFT) calculations. Depending on stoichiometry and bonding type, these novel 2D layers have different structural stability and electronic properties, ranging from topological insulators to semiconductors with direct and indirect band gaps between 2.0 and 4.9 eV. We discuss their vibrational properties and Raman spectra for experimental identification of the predicted structures.
Exciton-Phonon Coupling in the Ultraviolet Absorption and Emission Spectra of Bulk Hexagonal Boron Nitride
2018
We present an \textit{ab initio} method to calculate phonon-assisted absorption and emission spectra in the presence of strong excitonic effects. We apply the method to bulk hexagonal BN which has an indirect band gap and is known for its strong luminescence in the UV range. We first analyse the excitons at the wave vector $\overline{q}$ of the indirect gap. The coupling of these excitons with the various phonon modes at $\overline{q}$ is expressed in terms of a product of the mean square displacement of the atoms and the second derivative of the optical response function with respect to atomic displacement along the phonon eigenvectors. The derivatives are calculated numerically with a fin…