Search results for " Instrumentation."

showing 10 items of 712 documents

Noncovalent force spectroscopy using wide-field optical and diamond-based magnetic imaging

2019

A realization of the force-induced remnant magnetization spectroscopy (FIRMS) technique of specific biomolecular binding is presented where detection is accomplished with wide-field optical and diamond-based magnetometry using an ensemble of nitrogen-vacancy (NV) color centers. The technique may be adapted for massively parallel screening of arrays of nanoscale samples.

Materials sciencePhysics - Instrumentation and DetectorsMagnetometerFOS: Physical sciencesGeneral Physics and AstronomyApplied Physics (physics.app-ph)02 engineering and technologyengineering.material01 natural scienceslaw.inventionMagnetizationlaw0103 physical sciencesPhysics - Biological PhysicsSpectroscopyMassively parallelNanoscopic scale010302 applied physicsQuantum Physicsbusiness.industryForce spectroscopyDiamondInstrumentation and Detectors (physics.ins-det)Physics - Applied Physics021001 nanoscience & nanotechnology3. Good healthBiological Physics (physics.bio-ph)engineeringOptoelectronicsQuantum Physics (quant-ph)0210 nano-technologybusinessRealization (systems)
researchProduct

Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor

2019

Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micron-scale detection volume and non-inductive based detection. A remaining challenge is to realize sufficiently high spectral resolution and concentration sensitivity for multidimensional NMR analysis of picoliter sample volumes. Here, we address this challenge by spatially separating the polarization and detection phases of the experiment in a microfluidic platform. We realize a spectral resolution of 0.65 +/- 0.05 Hz, an order-of-magnitude improvement over previous diamond NMR studies. We use the platform to perform …

Materials sciencePhysics - Instrumentation and DetectorsMicrofluidicsFOS: Physical sciences02 engineering and technologyApplied Physics (physics.app-ph)engineering.material01 natural sciencesPhysics - Chemical Physics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spectral resolution010306 general physicsSpectroscopyResearch ArticlesApplied PhysicsChemical Physics (physics.chem-ph)Chemical PhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryQuantum sensorDetectorSciAdv r-articlesDiamondNuclear magnetic resonance spectroscopyInstrumentation and Detectors (physics.ins-det)Physics - Applied Physics021001 nanoscience & nanotechnology3. Good health13. Climate actionengineeringOptoelectronics0210 nano-technologybusinessTwo-dimensional nuclear magnetic resonance spectroscopyResearch Article
researchProduct

A Composite Phononic Crystal Design for Quasiparticle Lifetime Enhancement in Kinetic Inductance Detectors

2019

A nanoscale phononic crystal filter (reflector) is designed for a kinetic inductance detector where the reflection band is matched to the quasiparticle recombination phonons with the aim to increase quasiparticle lifetime in the superconducting resonator. The inductor is enclosed by a 1 um wide phononic crystal membrane section with two simple hole patterns that each contain a partial spectral gap for various high frequency phonon modes. The phononic crystal is narrow enough for low frequency thermal phonons to propagate unimpeded. With 3D phonon scattering simulations over a 40 dB attenuation in transmitted power is found for the crystal, which was previously estimated to give a lifetime e…

Materials sciencePhysics - Instrumentation and DetectorsPhononFOS: Physical sciences02 engineering and technology01 natural sciencesCrystalResonatorCondensed Matter::Materials ScienceCondensed Matter::Superconductivity0103 physical sciencesGeneral Materials Science010306 general physicsSuperconductivityCondensed matter physicsPhonon scatteringAttenuationInstrumentation and Detectors (physics.ins-det)Computational Physics (physics.comp-ph)021001 nanoscience & nanotechnologyCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCrystal filterAtomic and Molecular Physics and OpticsQuasiparticleCondensed Matter::Strongly Correlated Electrons0210 nano-technologyPhysics - Computational Physics
researchProduct

Superconductor-ferromagnet tunnel junction thermoelectric bolometer and calorimeter with a SQUID readout

2020

Superconductor-ferromagnet thermoelectric detector (SFTED) is a novel ultrasensitive radiation detector based on the giant thermoelectric effect in superconductor-ferromagnet tunnel junctions. This type of detector can be operated without the need of additional bias lines, and is predicted to provide a performance rivaling transition-edge sensors and kinetic inductance detectors. Here we report our numerical studies on the SFTED noise equivalent power, energy resolution and time constant, and the feasibility of a SQUID readout in both bolometric and calorimetric regimes, with the goal to provide practical design parameters for the detector fabrication and the readout circuitry implementatio…

Materials sciencePhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsFOS: Physical sciences02 engineering and technologyApplied Physics (physics.app-ph)thermoelectric01 natural sciencesParticle detectorlaw.inventionsuprajohteetsähkömagneettinen säteilybolometermittauslaitteetTunnel junctionlawCondensed Matter::Superconductivity0103 physical sciencesThermoelectric effectcalorimeterGeneral Materials Sciencekalorimetria010306 general physicsNoise-equivalent powerCalorimeter (particle physics)business.industryBolometerDetectorPhysics - Applied PhysicsInstrumentation and Detectors (physics.ins-det)021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSQUIDOptoelectronicsHigh Energy Physics::Experiment0210 nano-technologybusiness
researchProduct

Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications

2014

We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum application…

Materials sciencePhysics - Instrumentation and DetectorsUltra-high vacuumFOS: Physical scienceschemistry.chemical_elementInstrumentation and Detectors (physics.ins-det)Fibre-reinforced plasticCondensed Matter Physics7. Clean energyCopperSurfaces Coatings and FilmschemistryDesorptionCopper coatingVacuum chamberComposite materialInstrumentationCuring (chemistry)
researchProduct

Evaluation of conventional, protaper hand and protaper rotary instrumentation system for apical extrusion of debris, irrigants and bacteria- An in vi…

2017

Background: Endodontic instrumentation carries the risk of over extrusion of debris and bacteria. The technique used and the type of instrumentation influences this risk. Aim: The purpose of this study was to evaluate and compare the K-file, ProTaper hand and ProTaper rotary instrumentation systems for the amount of apically extruded debris, irrigant solution and intracanal bacteria. Design: Experimental single blinded randomized type of in vitro study with sample of 30 single rooted teeth. Endodontic access cavities were prepared and the root canals were filled with the suspension of E. faecalis. Myers and Montogomery Model was used to collect apically extruded debris and irrigant. Canals …

Materials sciencebusiness.industry0206 medical engineeringSignificant differenceDentistryOdontología030206 dentistry02 engineering and technology:CIENCIAS MÉDICAS [UNESCO]Ciencias de la salud020601 biomedical engineering03 medical and health sciences0302 clinical medicineUNESCO::CIENCIAS MÉDICASIn vitro studyApical extrusionStatistical analysisRotary instrumentationbusinessGeneral DentistryJournal of Clinical and Experimental Dentistry
researchProduct

Impact of root canal preparation size and taper on coronal-apical micro-leakage using glucose penetration method

2014

Objectives: The purpose of this in vitro study was to assess the effect of root canal preparation size and taper on the amounts of glucose penetration. Material and Methods: For conducting this experimental study, eighty mandibular premolars with single straight canals were divided randomly into 2 experimental groups of 30 samples each and 2 control groups. Using K-files and the balance force technique, canals in group 1 were prepared apically to size 25 and coronally to size 2 Peeso - reamer. Group 2 were instrumented apically and coronally to size 40 and size 6 Peesoreamer, respectively. Rotary instrumentation was accomplished in group 1; using size 25 and .04 tapered and in group 2, size…

Materials sciencebusiness.industryRoot canalResearchDentistryOdontologíaPenetration (firestop):CIENCIAS MÉDICAS [UNESCO]Ciencias de la saludmedicine.anatomical_structureCoronal planeIntegral DentistryUNESCO::CIENCIAS MÉDICASmedicineIn vitro studyReamerRotary instrumentationbusinessGeneral DentistryJournal of Clinical and Experimental Dentistry
researchProduct

ADAHELI+: Exploring the fast, dynamic Sun in the X-ray, optical, and near-infrared

2015

Advanced Astronomy for Heliophysics Plus (ADAHELI+) is a project concept for a small solar and space weather mission with a budget compatible with an European Space Agency (ESA) S-class mission, including launch, and a fast development cycle. ADAHELI+ was submitted to the European Space Agency by a European-wide consortium of solar physics research institutes in response to the "Call for a small mission opportunity for a launch in 2017," of March 9, 2012. The ADAHELI+ project builds on the heritage of the former ADAHELI mission, which had successfully completed its phase-A study under the Italian Space Agency 2007 Small Mission Programme, thus proving the soundness and feasibility of its in…

Mechanical EngineeringSunAstronomy and AstrophysicsFabry-PérotFabry-Pérot; infrared spectroscopy; polarimetry; satellites; Sun; X-rays; Control and Systems Engineering; Electronic Optical and Magnetic Materials; Instrumentation; Astronomy and Astrophysics; Mechanical Engineering; Space and Planetary ScienceFabry-PérotsatellitesSettore FIS/05 - Astronomia E AstrofisicaControl and Systems EngineeringSpace and Planetary ScienceX-raysElectronicFabry-Pérot; infrared spectroscopy; polarimetry; satellites; Sun; X-rays; Electronic Optical and Magnetic Materials; Control and Systems Engineering; Instrumentation; Astronomy and Astrophysics; Mechanical Engineering; Space and Planetary ScienceOptical and Magnetic MaterialsSettore FIS/06 - Fisica per il Sistema Terra e Il Mezzo Circumterrestreinfrared spectroscopyInstrumentationpolarimetry
researchProduct

LabVIEW modeling and simulation, of the low-pass and high-pass analog filters

2015

Some programs for simulating different types of filters are developed using LabView software. Implementing a simulation program of an analog filter requires the prior establishment of mathematical model. As a general purpose programming environment, LabVIEW offers possibility of achieving some user programs for plotting frequency characteristics of passive and active analog filters, if established beforehand mathematical models that characterize their behavior. The scientific objectives of this paper are: -the analysis of the possibilities of using virtual instrumentation in the study of electrical filters; -implementation of virtual instruments for analysis and simulation of analog filters…

Modeling and simulationSignal processingAnalogue filterVirtual instrumentationbusiness.industryComputer scienceLow-pass filterElectronic engineeringPrototype filterbusinessAudio filterComputer hardwarem-derived filter2015 13th International Conference on Engineering of Modern Electric Systems (EMES)
researchProduct

The Modular X- and Gamma-Ray Sensor (MXGS)of the ASIM Payload on the International Space Station

2019

The Modular X- and Gamma-ray Sensor (MXGS) is an imaging and spectral X- and Gamma-ray instrument mounted on the starboard side of the Columbus module on the International Space Station. Together with the Modular Multi-Spectral Imaging Assembly (MMIA) (Chanrion et al. this issue) MXGS constitutes the instruments of the Atmosphere-Space Interactions Monitor (ASIM) (Neubert et al. this issue). The main objectives of MXGS are to image and measure the spectrum of X- and γ-rays from lightning discharges, known as Terrestrial Gamma-ray Flashes (TGFs), and for MMIA to image and perform high speed photometry of Transient Luminous Events (TLEs) and lightning discharges. With these two instruments sp…

Modular Multi-Spectral Imaging AssemblyPhysics - Instrumentation and Detectors010504 meteorology & atmospheric sciencesModular X- and Gamma-ray SensorFOS: Physical sciencesTerrestrial Gamma-ray FlashesInternational Space Station01 natural sciencesPhysics - Space Physics0103 physical sciencesInternational Space Station010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Atmosphere-Space Interaction Monitor0105 earth and related environmental sciencesRemote sensingPhysicsbusiness.industryPayloadGamma rayX- and Gamma-ray detector for spaceAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)Modular designLightningSpace Physics (physics.space-ph)Photometry (astronomy)Space and Planetary ScienceTransient (oscillation)Astrophysics - Instrumentation and Methods for Astrophysicsbusiness
researchProduct