6533b838fe1ef96bd12a3d9d
RESEARCH PRODUCT
Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor
Joshua DamronAndrew F. McdowellNazanin MosavianNathaniel RistoffVictor M. AcostaPauli KehayiasPauli KehayiasJanis SmitsJanis SmitsAbdelghani LaraouiIlja FescenkoAndrey Jarmolasubject
Materials sciencePhysics - Instrumentation and DetectorsMicrofluidicsFOS: Physical sciences02 engineering and technologyApplied Physics (physics.app-ph)engineering.material01 natural sciencesPhysics - Chemical Physics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spectral resolution010306 general physicsSpectroscopyResearch ArticlesApplied PhysicsChemical Physics (physics.chem-ph)Chemical PhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryQuantum sensorDetectorSciAdv r-articlesDiamondNuclear magnetic resonance spectroscopyInstrumentation and Detectors (physics.ins-det)Physics - Applied Physics021001 nanoscience & nanotechnology3. Good health13. Climate actionengineeringOptoelectronics0210 nano-technologybusinessTwo-dimensional nuclear magnetic resonance spectroscopyResearch Articledescription
Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micron-scale detection volume and non-inductive based detection. A remaining challenge is to realize sufficiently high spectral resolution and concentration sensitivity for multidimensional NMR analysis of picoliter sample volumes. Here, we address this challenge by spatially separating the polarization and detection phases of the experiment in a microfluidic platform. We realize a spectral resolution of 0.65 +/- 0.05 Hz, an order-of-magnitude improvement over previous diamond NMR studies. We use the platform to perform two-dimensional correlation spectroscopy of liquid analytes within an effective ~20 picoliter detection volume. The use of diamond quantum sensors as in-line microfluidic NMR detectors is a significant step towards applications in mass-limited chemical analysis and single cell biology.
year | journal | country | edition | language |
---|---|---|---|---|
2019-07-01 |