0000000000388149

AUTHOR

Abdelghani Laraoui

Diamond Magnetic Microscopy of Malarial Hemozoin Nanocrystals.

Magnetic microscopy of malarial hemozoin nanocrystals was performed using optically detected magnetic resonance imaging of near-surface diamond nitrogen-vacancy centers. Hemozoin crystals were extracted from $Plasmodium$-$falciparum$-infected human blood cells and studied alongside synthetic hemozoin crystals. The stray magnetic fields produced by individual crystals were imaged at room temperature as a function of applied field up to 350 mT. More than 100 nanocrystals were analyzed, revealing the distribution of their magnetic properties. Most crystals ($96\%$) exhibit a linear dependence of stray field magnitude on applied field, confirming hemozoin's paramagnetic nature. A volume magneti…

research product

Nitrogen-Vacancy Magnetometry of Individual Fe-Triazole Spin Crossover Nanorods

[Fe(Htrz)2(trz)](BF4) (Fe-triazole) spin crossover molecules show thermal, electrical, and optical switching between high spin (HS) and low spin (LS) states, making them promising candidates for molecular spintronics. The LS and HS transitions originate from the electronic configurations of Fe(II), and are considered to be diamagnetic and paramagnetic respectively. The Fe(II) LS state has six paired electrons in the ground states with no interaction with the magnetic field and a diamagnetic behavior is usually observed. While the bulk magnetic properties of Fe-triazole compounds are widely studied by standard magnetometry techniques their properties at the individual level are missing. Here…

research product

Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor

Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micron-scale detection volume and non-inductive based detection. A remaining challenge is to realize sufficiently high spectral resolution and concentration sensitivity for multidimensional NMR analysis of picoliter sample volumes. Here, we address this challenge by spatially separating the polarization and detection phases of the experiment in a microfluidic platform. We realize a spectral resolution of 0.65 +/- 0.05 Hz, an order-of-magnitude improvement over previous diamond NMR studies. We use the platform to perform …

research product

Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip

We demonstrate nuclear magnetic resonance (NMR) spectroscopy of picoliter-volume solutions with a nanostructured diamond chip. Using optical interferometric lithography, diamond surfaces were nanostructured with dense, high-aspect-ratio nanogratings, enhancing the surface area by more than a factor of 15 over mm^2 regions of the chip. The nanograting sidewalls were doped with nitrogen-vacancy (NV) centers so that more than 10 million NV centers in a (25 micrometer)^2 laser spot are located close enough to the diamond surface (5 nm) to detect the NMR spectrum of 1 pL of fluid lying within adjacent nanograting grooves. The platform was used to perform 1H and 19F NMR spectroscopy at room tempe…

research product