6533b7dcfe1ef96bd1271e35

RESEARCH PRODUCT

Diamond Magnetic Microscopy of Malarial Hemozoin Nanocrystals.

Pauli KehayiasPauli KehayiasVictor M. AcostaNazanin MosavianJong SetoIlja FescenkoAbdelghani LaraouiJanis SmitsJanis SmitsAndrey JarmolaLykourgos Bougas

subject

Materials scienceFOS: Physical sciencesGeneral Physics and AstronomyNanoparticleBioengineering02 engineering and technology01 natural sciencesArticleCrystalParamagnetismRare DiseasesEngineeringMesoscale and Nanoscale Physics (cond-mat.mes-hall)parasitic diseases0103 physical sciencesMicroscopyNanotechnologyPhysics - Biological Physics010306 general physicsSaturation (magnetic)Condensed Matter - Mesoscale and Nanoscale PhysicsHemozoin021001 nanoscience & nanotechnologyMagnetic susceptibility3. Good healthMalariaVector-Borne DiseasesInfectious DiseasesGood Health and Well BeingBiological Physics (physics.bio-ph)Chemical physicsPhysical Sciences0210 nano-technologySuperparamagnetism

description

Magnetic microscopy of malarial hemozoin nanocrystals was performed using optically detected magnetic resonance imaging of near-surface diamond nitrogen-vacancy centers. Hemozoin crystals were extracted from $Plasmodium$-$falciparum$-infected human blood cells and studied alongside synthetic hemozoin crystals. The stray magnetic fields produced by individual crystals were imaged at room temperature as a function of applied field up to 350 mT. More than 100 nanocrystals were analyzed, revealing the distribution of their magnetic properties. Most crystals ($96\%$) exhibit a linear dependence of stray field magnitude on applied field, confirming hemozoin's paramagnetic nature. A volume magnetic susceptibility $\chi=3.4\times10^{-4}$ is inferred using a magnetostatic model informed by correlated scanning electron microscopy measurements of crystal dimensions. A small fraction of nanoparticles (4/82 for $Plasmodium$-produced and 1/41 for synthetic) exhibit a saturation behavior consistent with superparamagnetism. Translation of this platform to the study of living malaria-infected cells may shed new light on hemozoin formation dynamics and their interaction with antimalarial drugs.

https://escholarship.org/uc/item/5fh5x68m