Search results for " Instrumentation."
showing 10 items of 712 documents
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
2020
The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…
Dentinal microcracks after root canal instrumentation using instruments manufactured with different NiTi alloys and the SAF system: A systematic revi…
2021
Aim: The aim of this systematic analysis was to assess the prevalence of dentinal microcracks at various levels (3, 6, and 9 mm from the apex) after using instruments made with conventional, R-Phase, and M-Wire NiTi alloys and the SAF system. Materials and Methods: Electronic searches were conducted in the databases Embase, Cochrane Library, Scopus, PubMed, and Web of Science. To arrange search methods, “MeSH” terms and/or keywords typically associated with the subject were paired with the Boolean operators “AND” and “OR.” Additional searches were conducted on the websites of four separate endodontic journals. After reading the titles and excluding duplicates, 1000 of the 1343 documents ori…
Microwave-free magnetometry with nitrogen-vacancy centers in diamond
2016
We use magnetic-field-dependent features in the photoluminescence of negatively charged nitrogen-vacancy centers to measure magnetic fields without the use of microwaves. In particular, we present a magnetometer based on the level anti-crossing in the triplet ground state at 102.4 mT with a demonstrated noise floor of 6 nT/$\sqrt{\text{Hz}}$, limited by the intensity noise of the laser and the performance of the background-field power supply. The technique presented here can be useful in applications where the sensor is placed closed to conductive materials, e.g. magnetic induction tomography or magnetic field mapping, and in remote-sensing applications since principally no electrical acces…
Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks
2019
This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400~GeV$/c$ SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400~GeV$/c$ proton beams with the SHiP target, an otherwise computationally intensive process. For th…
The experimental facility for the Search for Hidden Particles at the CERN SPS
2019
The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 $\mathrm{\small GeV/c}$ proton beam offers a unique opportunity to explore the Hidden Sector. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived superweakly interacting particles…
The magnet of the scattering and neutrino detector for the SHiP experiment at CERN
2019
The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.
Thermal Analysis of the Solar Orbiter PHI Electronics Unit
2020
“© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”
Precise measurement of the top quark mass in dilepton decays using optimized neutrino weighting
2016
We measure the top quark mass in dilepton final states of top-antitop events in proton-antiproton collisions at sqrt(s) = 1.96 TeV, using data corresponding to an integrated luminosity of 9.7 fb^-1 at the Fermilab Tevatron Collider. The analysis features a comprehensive optimization of the neutrino weighting method to minimize the statistical uncertainties. We also improve the calibration of jet energies using the calibration determined in top-antitop to lepton+jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. The measured top quark mass is mt = 173.32 +/- 1.36(stat) +/- 0.85(syst) GeV.
Current-Based Measurement Technique for High Sensitivity Detection of Resistive Bridges With External Balancing Through Control Voltages
2017
We present a novel approach based on differential measurements of dc currents with very high sensitivity suitable for the detection of very small variations of resistors in Wheatstone full-bridge configurations. External control voltages allow for the compensation of the bridge unbalancing avoiding the need of changing its elements so making the solution suitable for integrated sensor systems. The proposed current-based measurement technique has been implemented through three different circuits, in transimpedance configuration and without the use of any further amplification stage, employing only two active blocks that allow for a very high integration level. The main characteristics of the…
Trigger and aperture of the surface detector array of the Pierre Auger Observatory
2010
The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive airshowers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidates howers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 1018 eV, for all zenith angles between 03 and 603, independently of the position of the impact point and of the mass of the primary particl…