Search results for " Inverter"
showing 10 items of 67 documents
Dead-time impact on the harmonic distortion and conversion efficiency in a three-phase five-level Cascaded H-Bridge inverter: mathematical formulatio…
2023
To avoid leg short-circuit in inverters, dead time must be introduced on leg gate signals. Dead time affects the inverter output voltage fundamental harmonic amplitude, voltage harmonic distortion and inverter efficiency by introducing additional voltage drops. In this regard, dead time effects have been widely investigated for traditional two-level three-phase voltage source inverters in the literature but not extensively for multilevel topology structures. This paper provides a detailed analysis of dead time impact on the harmonic distortion and efficiency of Cascaded H-Bridges Multilevel Inverters (CHBMIs). For this purpose, a general mathematical formulation to determine voltage drop du…
Graphical THD minimization procedure for single phase five-level converters
2017
This paper proposes two graphycal procedure to mitigate h harmonics and to minimize the total harmonic distortion (THD), respectively. The paper considers a five-level inverter and fundamental frequency modulation: it computes the two switching angles able to reduce low order harmonics and able to minimize the THD. Simulation results are obtained and, in order to validate the proposed procedure, an experimental prototype is built and experimental results are carried out. The comparison between simulation and experimental results confirms the accuracy of the proposed graphycal procedure. It is shown that the switching angles to mitigate the third-fifth and the third-fifth-seventh harmonics e…
Decoupled Control Scheme of Grid-Connected Split-Source Inverters
2017
During the last few years, single-stage power conversion systems has undergone a fast evolution to replace the conventional two-stage architecture, which includes a front-end dc-dc boost converter (BC) and an output voltage source inverter (VSI) [1]. This evolution has grown up to improve the overall system performance in terms of reducing its size, weight, and complexity. Most of these single-stage topologies and their different modulation schemes have been reviewed in [1]. Among these different single-stage options, the split-source inverter (SSI), shown in Figure 1, has been recently proposed in [2] as a single-stage dc-ac power converter topology to overcome some demerits in the other s…
Air gap fringing flux reduction in a high frequency inductor for a solar inverter
2013
In a gapped inductor, air gap fringing flux induces eddy currents in conductors in the vicinity of the air gap producing unwanted power loss and heat in the coil. This paper presents a detailed analysis to evaluate the performance changes of a high frequency inductor used in a solar inverter by new arrangement scheme of the air gap locations. The effect of air gap positioning in the core and the ac-resistance and leakage inductance of the high frequency inductor used in a solar inverter is investigated by using the 2-D finite element analysis. The simulation results show that a significant improvement can be achieved with limited changes in the air gap locations.
A discrete pulse group control-based series resonant inverter with complete ZCS-assisted inductors for consumer high frequency IH application
2017
This paper presents a pulse density modulated (PDM) voltage source high frequency series load resonant soft switching inverter (SRI) for the HF induction heated fixing roller in the energy saving copy and printing machines. The proposed simple and high efficiency SRI based on PDM control operation can achieve complete zero current soft switching for wide output power regulation ranges. In this work, its transient and steady-state operating principle are described and analyzed on the basis of high frequency PDM. The operating performances as power conversion efficiency, power losses analysis and temperature rising characteristics of this SRI are demonstrated and discussed through experimenta…
Using Pulse Density Modulation to Improve the Efficiency of IGBT Inverters in Induction Heating Applications
2007
This paper analyses a high power (50 kW), high frequency (150 kHz) voltage fed inverter with a series resonant load circuit for industrial induction heating applications which is characterized by a full bridge inverter made with IGBT and the power control based on pulse density modulation (PDM). This power control strategy allows that the inverter works close to the resonance frequency for all output power levels. In this situation zero-voltage switching (ZVS) and zero-current switching (ZCS) conditions are performed and the switching losses are minimized. The results are verified experimentally using a prototype for induction hardening applications. A comparative study between the PDM and …
Series and parallel resonant inverters for induction heating under short-circuit conditions considering parasitic components
1999
Series and parallel resonant inverters are the common structures in high power industrial generators for induction heating applications. In practical working conditions, short-circuit of the heating coil is very common, normally producing overvoltages that can damage the power transistors of the inverter if no special precautions are taken. The aim of the paper is to show the mechanism of how overvoltages are generated under short-circuit conditions of the heating coil for series and parallel inverters.
Monitoring of Cell Layer Integrity with a Current-Driven Organic Electrochemical Transistor
2019
Abstract The integrity of CaCo-2 cell barriers is investigated by organic electrochemical transistors (OECTs) in a current-driven configuration. Ion transport through cellular barriers via the paracellular pathway is modulated by tight junctions between adjacent cells. Rupturing its integrity by H2O2 is monitored by the change of the output voltage in the transfer characteristics. It is demonstrated that by operating the OECT in a current-driven configuration, the sensitive and temporal resolution for monitoring the cell barrier integrity is strongly enhanced as compared to the OECT transient response measurement. As a result, current-driven OECTs are useful tools to assess dynamic and crit…
Recursive Selective Harmonic Elimination for Multilevel Inverters: Mathematical Formulation and Experimental Validation
2023
A recursive method that eliminates +1 harmonics and their respective multiples from the output voltage of a cascaded H-bridge multilevel inverters with = 2 dc sources ( = 1, 2, 3,...) is proposed. It solves 2×2 linear systems with not singular matrices and always gives an exact solution with very low computational effort. Simulated results in three-phase five, nine, seventeen and thirty three level CHB inverters, and experimental results in five-level inverter demonstrate the validity of the method.
Enhanced Current Loop PI Controllers with Adaptive Feed-Forward Neural Network via Estimation of Grid Impedance: Application to Three-Phase Grid-Tied…
2022
This paper describes a single-stage grid-connected three-phase photovoltaic inverter feeding power to the grid. Using the Recursive Least Squares (RLS) Estimator, an online grid impedance technique is proposed in the stationary reference frame. The method iteratively estimates the grid resistance and inductance values and is effective in detecting inverter islanding according to IEEE standard 929-2000. An Adaptive Feedforward Neural (AFN) Controller has also been developed using the inverse of the system to improve the performance of the inner-loop Proportional-Integral controllers under dynamical conditions and provide better DC link voltage stability. The neural network weights are comput…