Search results for " Machine Learning"
showing 10 items of 300 documents
Verifying Properties of Tsetlin Machines
2023
Tsetlin Machines (TsMs) are a promising and interpretable machine learning method which can be applied for various classification tasks. We present an exact encoding of TsMs into propositional logic and formally verify properties of TsMs using a SAT solver. In particular, we introduce in this work a notion of similarity of machine learning models and apply our notion to check for similarity of TsMs. We also consider notions of robustness and equivalence from the literature and adapt them for TsMs. Then, we show the correctness of our encoding and provide results for the properties: adversarial robustness, equivalence, and similarity of TsMs. In our experiments, we employ the MNIST and IMDB …
Minimal Learning Machine: Theoretical Results and Clustering-Based Reference Point Selection
2019
The Minimal Learning Machine (MLM) is a nonlinear supervised approach based on learning a linear mapping between distance matrices computed in the input and output data spaces, where distances are calculated using a subset of points called reference points. Its simple formulation has attracted several recent works on extensions and applications. In this paper, we aim to address some open questions related to the MLM. First, we detail theoretical aspects that assure the interpolation and universal approximation capabilities of the MLM, which were previously only empirically verified. Second, we identify the task of selecting reference points as having major importance for the MLM's generaliz…
Deep neural networks to recover unknown physical parameters from oscillating time series.
2022
PLOS ONE 17(5), e0268439 (2022). doi:10.1371/journal.pone.0268439
Unsupervised Anomaly and Change Detection With Multivariate Gaussianization
2022
Anomaly detection (AD) is a field of intense research in remote sensing (RS) image processing. Identifying low probability events in RS images is a challenging problem given the high dimensionality of the data, especially when no (or little) information about the anomaly is available a priori. While a plenty of methods are available, the vast majority of them do not scale well to large datasets and require the choice of some (very often critical) hyperparameters. Therefore, unsupervised and computationally efficient detection methods become strictly necessary, especially now with the data deluge problem. In this article, we propose an unsupervised method for detecting anomalies and changes …
Model identification and local linear convergence of coordinate descent
2020
For composite nonsmooth optimization problems, Forward-Backward algorithm achieves model identification (e.g., support identification for the Lasso) after a finite number of iterations, provided the objective function is regular enough. Results concerning coordinate descent are scarcer and model identification has only been shown for specific estimators, the support-vector machine for instance. In this work, we show that cyclic coordinate descent achieves model identification in finite time for a wide class of functions. In addition, we prove explicit local linear convergence rates for coordinate descent. Extensive experiments on various estimators and on real datasets demonstrate that thes…
Living in the Physics and Machine Learning Interplay for Earth Observation
2020
Most problems in Earth sciences aim to do inferences about the system, where accurate predictions are just a tiny part of the whole problem. Inferences mean understanding variables relations, deriving models that are physically interpretable, that are simple parsimonious, and mathematically tractable. Machine learning models alone are excellent approximators, but very often do not respect the most elementary laws of physics, like mass or energy conservation, so consistency and confidence are compromised. In this paper, we describe the main challenges ahead in the field, and introduce several ways to live in the Physics and machine learning interplay: to encode differential equations from da…
Environment Sound Classification using Multiple Feature Channels and Attention based Deep Convolutional Neural Network
2020
In this paper, we propose a model for the Environment Sound Classification Task (ESC) that consists of multiple feature channels given as input to a Deep Convolutional Neural Network (CNN) with Attention mechanism. The novelty of the paper lies in using multiple feature channels consisting of Mel-Frequency Cepstral Coefficients (MFCC), Gammatone Frequency Cepstral Coefficients (GFCC), the Constant Q-transform (CQT) and Chromagram. Such multiple features have never been used before for signal or audio processing. And, we employ a deeper CNN (DCNN) compared to previous models, consisting of spatially separable convolutions working on time and feature domain separately. Alongside, we use atten…
An Open-set Recognition and Few-Shot Learning Dataset for Audio Event Classification in Domestic Environments
2020
The problem of training with a small set of positive samples is known as few-shot learning (FSL). It is widely known that traditional deep learning (DL) algorithms usually show very good performance when trained with large datasets. However, in many applications, it is not possible to obtain such a high number of samples. In the image domain, typical FSL applications include those related to face recognition. In the audio domain, music fraud or speaker recognition can be clearly benefited from FSL methods. This paper deals with the application of FSL to the detection of specific and intentional acoustic events given by different types of sound alarms, such as door bells or fire alarms, usin…
Machine learning method for single trajectory characterization
2019
In order to study transport in complex environments, it is extremely important to determine the physical mechanism underlying diffusion, and precisely characterize its nature and parameters. Often, this task is strongly impacted by data consisting of trajectories with short length and limited localization precision. In this paper, we propose a machine learning method based on a random forest architecture, which is able to associate even very short trajectories to the underlying diffusion mechanism with a high accuracy. In addition, the method is able to classify the motion according to normal or anomalous diffusion, and determine its anomalous exponent with a small error. The method provide…
Design of one-year mortality forecast at hospital admission based: a machine learning approach
2019
Background: Palliative care is referred to a set of programs for patients that suffer life-limiting illnesses. These programs aim to guarantee a minimum level of quality of life (QoL) for the last stage of life. They are currently based on clinical evaluation of risk of one-year mortality. Objectives: The main objective of this work is to develop and validate machine-learning based models to predict the exitus of a patient within the next year using data gathered at hospital admission. Methods: Five machine learning techniques were applied in our study to develop machine-learning predictive models: Support Vector Machines, K-neighbors Classifier, Gradient Boosting Classifier, Random Forest …