Search results for " Machine Learning"

showing 10 items of 300 documents

Verifying Properties of Tsetlin Machines

2023

Tsetlin Machines (TsMs) are a promising and interpretable machine learning method which can be applied for various classification tasks. We present an exact encoding of TsMs into propositional logic and formally verify properties of TsMs using a SAT solver. In particular, we introduce in this work a notion of similarity of machine learning models and apply our notion to check for similarity of TsMs. We also consider notions of robustness and equivalence from the literature and adapt them for TsMs. Then, we show the correctness of our encoding and provide results for the properties: adversarial robustness, equivalence, and similarity of TsMs. In our experiments, we employ the MNIST and IMDB …

FOS: Computer and information sciencesComputer Science - Machine LearningMachine Learning (cs.LG)
researchProduct

Minimal Learning Machine: Theoretical Results and Clustering-Based Reference Point Selection

2019

The Minimal Learning Machine (MLM) is a nonlinear supervised approach based on learning a linear mapping between distance matrices computed in the input and output data spaces, where distances are calculated using a subset of points called reference points. Its simple formulation has attracted several recent works on extensions and applications. In this paper, we aim to address some open questions related to the MLM. First, we detail theoretical aspects that assure the interpolation and universal approximation capabilities of the MLM, which were previously only empirically verified. Second, we identify the task of selecting reference points as having major importance for the MLM's generaliz…

FOS: Computer and information sciencesComputer Science - Machine LearningMinimal Learning MachinekoneoppiminenStatistics - Machine Learninguniversal approximationMachine Learning (stat.ML)interpolointiapproksimointireference point selectionclusteringMachine Learning (cs.LG)
researchProduct

Deep neural networks to recover unknown physical parameters from oscillating time series.

2022

PLOS ONE 17(5), e0268439 (2022). doi:10.1371/journal.pone.0268439

FOS: Computer and information sciencesComputer Science - Machine LearningMultidisciplinaryTime FactorsPhysics610FOS: Physical sciencesSignal Processing Computer-AssistedNumerical Analysis (math.NA)Machine Learning (cs.LG)KnowledgePhysics - Data Analysis Statistics and ProbabilityFOS: MathematicsHumansMathematics - Numerical Analysisddc:610Neural Networks ComputerData Analysis Statistics and Probability (physics.data-an)PloS one
researchProduct

Unsupervised Anomaly and Change Detection With Multivariate Gaussianization

2022

Anomaly detection (AD) is a field of intense research in remote sensing (RS) image processing. Identifying low probability events in RS images is a challenging problem given the high dimensionality of the data, especially when no (or little) information about the anomaly is available a priori. While a plenty of methods are available, the vast majority of them do not scale well to large datasets and require the choice of some (very often critical) hyperparameters. Therefore, unsupervised and computationally efficient detection methods become strictly necessary, especially now with the data deluge problem. In this article, we propose an unsupervised method for detecting anomalies and changes …

FOS: Computer and information sciencesComputer Science - Machine LearningMultivariate statisticsComputer sciencebusiness.industryComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionFOS: Physical sciencesImage processingPattern recognitionMultivariate normal distributionComputational Physics (physics.comp-ph)Machine Learning (cs.LG)Methodology (stat.ME)Transformation (function)Robustness (computer science)General Earth and Planetary SciencesAnomaly detectionArtificial intelligenceElectrical and Electronic EngineeringbusinessPhysics - Computational PhysicsStatistics - MethodologyChange detectionCurse of dimensionalityIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Model identification and local linear convergence of coordinate descent

2020

For composite nonsmooth optimization problems, Forward-Backward algorithm achieves model identification (e.g., support identification for the Lasso) after a finite number of iterations, provided the objective function is regular enough. Results concerning coordinate descent are scarcer and model identification has only been shown for specific estimators, the support-vector machine for instance. In this work, we show that cyclic coordinate descent achieves model identification in finite time for a wide class of functions. In addition, we prove explicit local linear convergence rates for coordinate descent. Extensive experiments on various estimators and on real datasets demonstrate that thes…

FOS: Computer and information sciencesComputer Science - Machine LearningOptimization and Control (math.OC)Statistics - Machine Learning[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]FOS: Mathematics[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Machine Learning (stat.ML)[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC][MATH.MATH-ST] Mathematics [math]/Statistics [math.ST]Mathematics - Optimization and ControlMachine Learning (cs.LG)
researchProduct

Living in the Physics and Machine Learning Interplay for Earth Observation

2020

Most problems in Earth sciences aim to do inferences about the system, where accurate predictions are just a tiny part of the whole problem. Inferences mean understanding variables relations, deriving models that are physically interpretable, that are simple parsimonious, and mathematically tractable. Machine learning models alone are excellent approximators, but very often do not respect the most elementary laws of physics, like mass or energy conservation, so consistency and confidence are compromised. In this paper, we describe the main challenges ahead in the field, and introduce several ways to live in the Physics and machine learning interplay: to encode differential equations from da…

FOS: Computer and information sciencesComputer Science - Machine LearningPhysics - Atmospheric and Oceanic PhysicsAtmospheric and Oceanic Physics (physics.ao-ph)FOS: Physical sciencesApplications (stat.AP)Statistics - ApplicationsMachine Learning (cs.LG)
researchProduct

Environment Sound Classification using Multiple Feature Channels and Attention based Deep Convolutional Neural Network

2020

In this paper, we propose a model for the Environment Sound Classification Task (ESC) that consists of multiple feature channels given as input to a Deep Convolutional Neural Network (CNN) with Attention mechanism. The novelty of the paper lies in using multiple feature channels consisting of Mel-Frequency Cepstral Coefficients (MFCC), Gammatone Frequency Cepstral Coefficients (GFCC), the Constant Q-transform (CQT) and Chromagram. Such multiple features have never been used before for signal or audio processing. And, we employ a deeper CNN (DCNN) compared to previous models, consisting of spatially separable convolutions working on time and feature domain separately. Alongside, we use atten…

FOS: Computer and information sciencesComputer Science - Machine LearningSound (cs.SD)Computer science020209 energyMachine Learning (stat.ML)02 engineering and technologycomputer.software_genreConvolutional neural networkComputer Science - SoundDomain (software engineering)Machine Learning (cs.LG)Statistics - Machine LearningAudio and Speech Processing (eess.AS)0202 electrical engineering electronic engineering information engineeringFOS: Electrical engineering electronic engineering information engineeringAudio signal processingVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550business.industrySIGNAL (programming language)Pattern recognitionFeature (computer vision)Benchmark (computing)020201 artificial intelligence & image processingArtificial intelligenceMel-frequency cepstrumbusinesscomputerElectrical Engineering and Systems Science - Audio and Speech ProcessingCommunication channel
researchProduct

An Open-set Recognition and Few-Shot Learning Dataset for Audio Event Classification in Domestic Environments

2020

The problem of training with a small set of positive samples is known as few-shot learning (FSL). It is widely known that traditional deep learning (DL) algorithms usually show very good performance when trained with large datasets. However, in many applications, it is not possible to obtain such a high number of samples. In the image domain, typical FSL applications include those related to face recognition. In the audio domain, music fraud or speaker recognition can be clearly benefited from FSL methods. This paper deals with the application of FSL to the detection of specific and intentional acoustic events given by different types of sound alarms, such as door bells or fire alarms, usin…

FOS: Computer and information sciencesComputer Science - Machine LearningSound (cs.SD)sound processingaudio datasetmachine listeningUNESCO::CIENCIAS TECNOLÓGICASComputer Science - SoundMachine Learning (cs.LG)classificationArtificial IntelligenceAudio and Speech Processing (eess.AS)Signal ProcessingFOS: Electrical engineering electronic engineering information engineeringfew-shot learningopen-set recognitionComputer Vision and Pattern RecognitionSoftwareElectrical Engineering and Systems Science - Audio and Speech Processing
researchProduct

Machine learning method for single trajectory characterization

2019

In order to study transport in complex environments, it is extremely important to determine the physical mechanism underlying diffusion, and precisely characterize its nature and parameters. Often, this task is strongly impacted by data consisting of trajectories with short length and limited localization precision. In this paper, we propose a machine learning method based on a random forest architecture, which is able to associate even very short trajectories to the underlying diffusion mechanism with a high accuracy. In addition, the method is able to classify the motion according to normal or anomalous diffusion, and determine its anomalous exponent with a small error. The method provide…

FOS: Computer and information sciencesComputer Science - Machine LearningStatistical Mechanics (cond-mat.stat-mech)Biological Physics (physics.bio-ph)FOS: Physical sciencesPhysics - Biological PhysicsCondensed Matter - Statistical MechanicsMachine Learning (cs.LG)
researchProduct

Design of one-year mortality forecast at hospital admission based: a machine learning approach

2019

Background: Palliative care is referred to a set of programs for patients that suffer life-limiting illnesses. These programs aim to guarantee a minimum level of quality of life (QoL) for the last stage of life. They are currently based on clinical evaluation of risk of one-year mortality. Objectives: The main objective of this work is to develop and validate machine-learning based models to predict the exitus of a patient within the next year using data gathered at hospital admission. Methods: Five machine learning techniques were applied in our study to develop machine-learning predictive models: Support Vector Machines, K-neighbors Classifier, Gradient Boosting Classifier, Random Forest …

FOS: Computer and information sciencesComputer Science - Machine LearningStatistics - Machine LearningApplications (stat.AP)Machine Learning (stat.ML)Statistics - ApplicationsMachine Learning (cs.LG)
researchProduct