Search results for " Machine Learning"
showing 10 items of 300 documents
A Smart Assistant for Visual Recognition of Painted Scenes
2021
Nowadays, smart devices allow people to easily interact with the surrounding environment thanks to existing communication infrastructures, i.e., 3G/4G/5G or WiFi. In the context of a smart museum, data shared by visitors can be used to provide innovative services aimed to improve their cultural experience. In this paper, we consider as case study the painted wooden ceiling of the Sala Magna of Palazzo Chiaramonte in Palermo, Italy and we present an intelligent system that visitors can use to automatically get a description of the scenes they are interested in by simply pointing their smartphones to them. As compared to traditional applications, this system completely eliminates the need for…
A Federated Learning Approach for Distributed Human Activity Recognition
2022
In recent years, the widespread diffusion of smart pervasive devices able to provide AI-based services has encouraged research in the definition of new distributed learning paradigms. Federated Learning (FL) is one of the most recent approaches which allows devices to collaborate to train AI-based models, whereas guarantying privacy and lower communication costs. Although different studies on FL have been conducted, a general and modular architecture capable of performing well in different scenarios is still missing. Following this direction, this paper proposes a general FL framework whose validity is assessed by considering a distributed activity recognition scenario in which users' perso…
McRock at SemEval-2022 Task 4: Patronizing and Condescending Language Detection using Multi-Channel CNN, Hybrid LSTM, DistilBERT and XLNet
2022
In this paper we propose four deep learning models for the task of detecting and classifying Patronizing and Condescending Language (PCL) using a corpus of over 13,000 annotated paragraphs in English. The task, hosted at SemEval-2022, consists of two different subtasks. The Subtask 1 is a binary classification problem. Namely, given a paragraph, a system must predict whether or not it contains any form of PCL. The Subtask 2 is a multi-label classification task. Given a paragraph, a system must identify which PCL categories express the condescension. A paragraph might contain one or more categories of PCL. To face with the first subtask we propose a multi-channel Convolutional Neural Network…
On Representing Concepts in High-dimensional Linear Spaces
2017
Producing a mathematical model of concepts is a very important issue in artificial intelligence, because if such a model were found this, besides being a very interesting result in its own right, would also contribute to the emergence of what we could call the ‘mathematics of thought.’ One of the most interesting attempts made in this direction is P. Gardenfors’ theory of conceptual spaces, a ¨ theory which is mostly presented by its author in an informal way. The main aim of the present article is contributing to Gardenfors’ theory of conceptual spaces ¨ by discussing some of the advantages which derive from the possibility of representing concepts in high-dimensional linear spaces.
Structural Knowledge Extraction and Representation in Sensory Data
During the last decades the availability of increasingly cheaper technology for pervasive monitoring has boosted the creation of systems able to automatically comprehend the events occurring in the monitored area, in order to plan a set of actions to bring the environment closer to the user's preferences. These systems must inevitably process a great amount of raw data - sensor measurements - and need to summarize them in a high-level representation to accomplish their tasks. An implicit requirement is the need to learn from experience, in order to be able to capture the hidden structure of the data, in terms of relations between its key components. The availability of large collections of …
Fake News Spreaders Detection: Sometimes Attention Is Not All You Need
2022
Guided by a corpus linguistics approach, in this article we present a comparative evaluation of State-of-the-Art (SotA) models, with a special focus on Transformers, to address the task of Fake News Spreaders (i.e., users that share Fake News) detection. First, we explore the reference multilingual dataset for the considered task, exploiting corpus linguistics techniques, such as chi-square test, keywords and Word Sketch. Second, we perform experiments on several models for Natural Language Processing. Third, we perform a comparative evaluation using the most recent Transformer-based models (RoBERTa, DistilBERT, BERT, XLNet, ELECTRA, Longformer) and other deep and non-deep SotA models (CNN,…
Rapid parameter estimation of discrete decaying signals using autoencoder networks
2021
Machine learning: science and technology 2(4), 045024 (2021). doi:10.1088/2632-2153/ac1eea
Causal inference in geosciences with kernel sensitivity maps
2020
Establishing causal relations between random variables from observational data is perhaps the most important challenge in today's Science. In remote sensing and geosciences this is of special relevance to better understand the Earth's system and the complex and elusive interactions between processes. In this paper we explore a framework to derive cause-effect relations from pairs of variables via regression and dependence estimation. We propose to focus on the sensitivity (curvature) of the dependence estimator to account for the asymmetry of the forward and inverse densities of approximation residuals. Results in a large collection of 28 geoscience causal inference problems demonstrate the…
Nonlinear Distribution Regression for Remote Sensing Applications
2020
In many remote sensing applications, one wants to estimate variables or parameters of interest from observations. When the target variable is available at a resolution that matches the remote sensing observations, standard algorithms, such as neural networks, random forests, or the Gaussian processes, are readily available to relate the two. However, we often encounter situations where the target variable is only available at the group level, i.e., collectively associated with a number of remotely sensed observations. This problem setting is known in statistics and machine learning as multiple instance learning (MIL) or distribution regression (DR). This article introduces a nonlinear (kern…
Random Feature Approximation for Online Nonlinear Graph Topology Identification
2021
Online topology estimation of graph-connected time series is challenging, especially since the causal dependencies in many real-world networks are nonlinear. In this paper, we propose a kernel-based algorithm for graph topology estimation. The algorithm uses a Fourier-based Random feature approximation to tackle the curse of dimensionality associated with the kernel representations. Exploiting the fact that the real-world networks often exhibit sparse topologies, we propose a group lasso based optimization framework, which is solve using an iterative composite objective mirror descent method, yielding an online algorithm with fixed computational complexity per iteration. The experiments con…