Search results for " Machine Learning"

showing 10 items of 300 documents

Inference of Spatio-Temporal Functions over Graphs via Multi-Kernel Kriged Kalman Filtering

2018

Inference of space-time varying signals on graphs emerges naturally in a plethora of network science related applications. A frequently encountered challenge pertains to reconstructing such dynamic processes, given their values over a subset of vertices and time instants. The present paper develops a graph-aware kernel-based kriged Kalman filter that accounts for the spatio-temporal variations, and offers efficient online reconstruction, even for dynamically evolving network topologies. The kernel-based learning framework bypasses the need for statistical information by capitalizing on the smoothness that graph signals exhibit with respect to the underlying graph. To address the challenge o…

Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine LearningComputational complexity theoryComputer scienceInferenceMachine Learning (stat.ML)Network scienceMultikernel02 engineering and technologyNetwork topologyLinear spanMachine Learning (cs.LG)Kernel (linear algebra)Matrix (mathematics)Statistics - Machine LearningFOS: Electrical engineering electronic engineering information engineering0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringElectrical Engineering and Systems Science - Signal Processing020206 networking & telecommunicationsKalman filterSignal Processing020201 artificial intelligence & image processingLaplace operatorAlgorithm
researchProduct

Deep Gaussian processes for biogeophysical parameter retrieval and model inversion

2020

Parameter retrieval and model inversion are key problems in remote sensing and Earth observation. Currently, different approximations exist: a direct, yet costly, inversion of radiative transfer models (RTMs); the statistical inversion with in situ data that often results in problems with extrapolation outside the study area; and the most widely adopted hybrid modeling by which statistical models, mostly nonlinear and non-parametric machine learning algorithms, are applied to invert RTM simulations. We will focus on the latter. Among the different existing algorithms, in the last decade kernel based methods, and Gaussian Processes (GPs) in particular, have provided useful and informative so…

Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine LearningEarth observation010504 meteorology & atmospheric sciencesIASIComputer science0211 other engineering and technologiesExtrapolation02 engineering and technologyDeep Gaussian Processes01 natural sciencesArticleMachine Learning (cs.LG)symbols.namesakeCopernicus programmeSentinelsMachine learningRadiative transferFOS: Electrical engineering electronic engineering information engineeringElectrical Engineering and Systems Science - Signal ProcessingComputers in Earth SciencesModel inversionStatistical retrievalEngineering (miscellaneous)Gaussian processChlorophyll contentMoisture021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryInorganic suspended matterTemperatureInversion (meteorology)Statistical modelAtomic and Molecular Physics and OpticsComputer Science ApplicationsInfrared sounderNonlinear systemsymbolsGlobal Positioning SystemColoured dissolved matterbusinessAlgorithm
researchProduct

Causal Inference in Geoscience and Remote Sensing From Observational Data

2020

Establishing causal relations between random variables from observational data is perhaps the most important challenge in today’s science. In remote sensing and geosciences, this is of special relevance to better understand the earth’s system and the complex interactions between the governing processes. In this paper, we focus on an observational causal inference, and thus, we try to estimate the correct direction of causation using a finite set of empirical data. In addition, we focus on the more complex bivariate scenario that requires strong assumptions and no conditional independence tests can be used. In particular, we explore the framework of (nondeterministic) additive noise models, …

Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine LearningEarth science0211 other engineering and technologiesEstimatorRegression analysis02 engineering and technologyBivariate analysisMachine Learning (cs.LG)Methodology (stat.ME)Nondeterministic algorithmConditional independence13. Climate actionCausal inferenceFOS: Electrical engineering electronic engineering information engineeringGeneral Earth and Planetary SciencesElectrical Engineering and Systems Science - Signal ProcessingElectrical and Electronic EngineeringSpurious relationshipStatistics - MethodologyIndependence (probability theory)021101 geological & geomatics engineeringRemote sensingIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Interpretable Tsetlin Machine-based Premature Ventricular Contraction Identification

2023

Neural network-based models have found wide use in automatic long-term electrocardiogram (ECG) analysis. However, such black box models are inadequate for analysing physiological signals where credibility and interpretability are crucial. Indeed, how to make ECG analysis transparent is still an open problem. In this study, we develop a Tsetlin machine (TM) based architecture for premature ventricular contraction (PVC) identification by analysing long-term ECG signals. The architecture is transparent by describing patterns directly with logical AND rules. To validate the accuracy of our approach, we compare the TM performance with those of convolutional neural networks (CNNs). Our numerical …

Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine LearningFOS: Electrical engineering electronic engineering information engineeringElectrical Engineering and Systems Science - Signal ProcessingMachine Learning (cs.LG)
researchProduct

Channel Gain Cartography via Mixture of Experts

2020

In order to estimate the channel gain (CG) between the locations of an arbitrary transceiver pair across a geographic area of interest, CG maps can be constructed from spatially distributed sensor measurements. Most approaches to build such spectrum maps are location-based, meaning that the input variable to the estimating function is a pair of spatial locations. The performance of such maps depends critically on the ability of the sensors to determine their positions, which may be drastically impaired if the positioning pilot signals are affected by multi-path channels. An alternative location-free approach was recently proposed for spectrum power maps, where the input variable to the maps…

Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine LearningJ.2Computer scienceFeature extractionComputingMilieux_LEGALASPECTSOFCOMPUTING02 engineering and technologycomputer.software_genreMachine Learning (cs.LG)Channel gain0203 mechanical engineeringFOS: Electrical engineering electronic engineering information engineering0202 electrical engineering electronic engineering information engineeringElectrical Engineering and Systems Science - Signal ProcessingVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Location awareness020206 networking & telecommunications020302 automobile design & engineeringFunction (mathematics)Power (physics)Mixture of expertsVariable (computer science)TransceivercomputerAlgorithmGLOBECOM 2020 - 2020 IEEE Global Communications Conference
researchProduct

Spatial noise-aware temperature retrieval from infrared sounder data

2020

In this paper we present a combined strategy for the retrieval of atmospheric profiles from infrared sounders. The approach considers the spatial information and a noise-dependent dimensionality reduction approach. The extracted features are fed into a canonical linear regression. We compare Principal Component Analysis (PCA) and Minimum Noise Fraction (MNF) for dimensionality reduction, and study the compactness and information content of the extracted features. Assessment of the results is done on a big dataset covering many spatial and temporal situations. PCA is widely used for these purposes but our analysis shows that one can gain significant improvements of the error rates when using…

Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine Learningbusiness.industryComputer scienceDimensionality reductionFeature extraction0211 other engineering and technologiesWord error ratePattern recognitionRegression analysis02 engineering and technologyMachine Learning (cs.LG)Principal component analysisLinear regression0202 electrical engineering electronic engineering information engineeringFOS: Electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceElectrical Engineering and Systems Science - Signal ProcessingbusinessSpatial analysis021101 geological & geomatics engineering
researchProduct

Online Topology Identification from Vector Autoregressive Time Series

2019

Causality graphs are routinely estimated in social sciences, natural sciences, and engineering due to their capacity to efficiently represent the spatiotemporal structure of multivariate data sets in a format amenable for human interpretation, forecasting, and anomaly detection. A popular approach to mathematically formalize causality is based on vector autoregressive (VAR) models and constitutes an alternative to the well-known, yet usually intractable, Granger causality. Relying on such a VAR causality notion, this paper develops two algorithms with complementary benefits to track time-varying causality graphs in an online fashion. Their constant complexity per update also renders these a…

Signal Processing (eess.SP)FOS: Computer and information sciencesTheoretical computer scienceComputer scienceEstimatorMachine Learning (stat.ML)020206 networking & telecommunicationsRegret02 engineering and technologyCausalitySynthetic dataCausality (physics)Autoregressive modelGranger causalityStatistics - Machine LearningSignal ProcessingFOS: Electrical engineering electronic engineering information engineering0202 electrical engineering electronic engineering information engineeringAnomaly detectionElectrical and Electronic EngineeringTime seriesElectrical Engineering and Systems Science - Signal Processing
researchProduct

Adapting to Dynamic LEO-B5G Systems : Meta-Critic Learning Based Efficient Resource Scheduling

2022

Low earth orbit (LEO) satellite-assisted communications have been considered as one of key elements in beyond 5G systems to provide wide coverage and cost-efficient data services. Such dynamic space-terrestrial topologies impose exponential increase in the degrees of freedom in network management. In this paper, we address two practical issues for an over-loaded LEO-terrestrial system. The first challenge is how to efficiently schedule resources to serve the massive number of connected users, such that more data and users can be delivered/served. The second challenge is how to make the algorithmic solution more resilient in adapting to dynamic wireless environments.To address them, we first…

Signal Processing (eess.SP)FOS: Computer and information sciencesdynamic environmentComputer Science - Machine Learningreinforcement learningmeta-critic learningComputer Science - Artificial Intelligence5G-tekniikkaresursointiMachine Learning (cs.LG): Electrical & electronics engineering [C06] [Engineering computing & technology]LEO satelliteslangaton tiedonsiirtoresources allocationalgoritmitFOS: Electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringElectrical Engineering and Systems Science - Signal Processing: Ingénierie électrique & électronique [C06] [Ingénierie informatique & technologie]Applied MathematicstietoliikennesatelliititComputer Science ApplicationsArtificial Intelligence (cs.AI)koneoppiminenresource schedulinglangattomat verkot
researchProduct

SHARP: Environment and Person Independent Activity Recognition with Commodity IEEE 802.11 Access Points

2022

In this article we present SHARP, an original approach for obtaining human activity recognition (HAR) through the use of commercial IEEE 802.11 (Wi-Fi) devices. SHARP grants the possibility to discern the activities of different persons, across different time-spans and environments. To achieve this, we devise a new technique to clean and process the channel frequency response (CFR) phase of the Wi-Fi channel, obtaining an estimate of the Doppler shift at a radio monitor device. The Doppler shift reveals the presence of moving scatterers in the environment, while not being affected by (environment-specific) static objects. SHARP is trained on data collected as a person performs seven differe…

Signal Processing (eess.SP)Networking and Internet Architecture (cs.NI)FOS: Computer and information scienceshuman activity recognitionMobile computingComputer Science - Machine LearningCFRMonitoringSensorsComputer Networks and CommunicationsIEEE 802.11acneural networksWi-Fi sensingMachine Learning (cs.LG)Computer Science - Networking and Internet ArchitectureCSIActivity recognitionFOS: Electrical engineering electronic engineering information engineeringPerformance evaluationFeature extractionWireless fidelityElectrical and Electronic EngineeringElectrical Engineering and Systems Science - Signal Processingcontactless indoor monitoringSoftware
researchProduct

Quantum Machine Learning: A tutorial

2021

This tutorial provides an overview of Quantum Machine Learning (QML), a relatively novel discipline that brings together concepts from Machine Learning (ML), Quantum Computing (QC) and Quantum Information (QI). The great development experienced by QC, partly due to the involvement of giant technological companies as well as the popularity and success of ML have been responsible of making QML one of the main streams for researchers working on fuzzy borders between Physics, Mathematics and Computer Science. A possible, although arguably coarse, classification of QML methods may be based on those approaches that make use of ML in a quantum experimentation environment and those others that take…

SpeedupTheoretical computer scienceQuantum machine learningComputer scienceCognitive NeuroscienceQuantum reinforcement learningQuantum computingFuzzy logicPopularityComputer Science ApplicationsComputational speed-upDevelopment (topology)Artificial IntelligenceQuantum clusteringQuantum informationQuantumQuantum-inspired learning algorithmsQuantum computerQuantum autoencoders
researchProduct