Search results for " Machine Learning"

showing 10 items of 300 documents

A fast and recursive algorithm for clustering large datasets with k-medians

2012

Clustering with fast algorithms large samples of high dimensional data is an important challenge in computational statistics. Borrowing ideas from MacQueen (1967) who introduced a sequential version of the $k$-means algorithm, a new class of recursive stochastic gradient algorithms designed for the $k$-medians loss criterion is proposed. By their recursive nature, these algorithms are very fast and are well adapted to deal with large samples of data that are allowed to arrive sequentially. It is proved that the stochastic gradient algorithm converges almost surely to the set of stationary points of the underlying loss criterion. A particular attention is paid to the averaged versions, which…

Statistics and ProbabilityClustering high-dimensional dataFOS: Computer and information sciencesMathematical optimizationhigh dimensional dataMachine Learning (stat.ML)02 engineering and technologyStochastic approximation01 natural sciencesStatistics - Computation010104 statistics & probabilityk-medoidsStatistics - Machine Learning[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]stochastic approximation0202 electrical engineering electronic engineering information engineeringComputational statisticsrecursive estimatorsAlmost surely[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]0101 mathematicsCluster analysisComputation (stat.CO)Mathematicsaveragingk-medoidsRobbins MonroApplied MathematicsEstimator[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]stochastic gradient[ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]MedoidComputational MathematicsComputational Theory and Mathematicsonline clustering020201 artificial intelligence & image processingpartitioning around medoidsAlgorithm
researchProduct

Prediction of Airport Pavement Moduli by Machine Learning Methodology Using Non-destructive Field Testing Data Augmentation

2022

For the purpose of the Airport Pavement Management System (APMS), in order to optimize the maintenance strategies, it is fundamental monitoring the pavement conditions’ deterioration with time. In this way, the most damaged areas can be detected and intervention can be prioritized. The conventional approach consists in performing non-destructive tests by means of a Heavy Weight Deflectometer (HWD). This equipment allows the measurement of the pavement deflections induced by a defined impact load. This is a quite expensive and time-consuming procedure, therefore, the points to be investigated are usually limited to the center points of a very large mesh grid. Starting from the measured defle…

Stiffness moduluData augmentationAirport pavement; Data augmentation; Machine learning; Non-destructive testing data; Stiffness modulusMachine learningNon-destructive testing dataSettore ICAR/04 - Strade Ferrovie Ed AeroportiAirport pavementAirport pavement; Stiffness modulus; Data augmentation; Machine learning; Non-destructive testing dataStiffness modulus
researchProduct

Adaptive sparse representation of continuous input for tsetlin machines based on stochastic searching on the line

2021

This paper introduces a novel approach to representing continuous inputs in Tsetlin Machines (TMs). Instead of using one Tsetlin Automaton (TA) for every unique threshold found when Booleanizing continuous input, we employ two Stochastic Searching on the Line (SSL) automata to learn discriminative lower and upper bounds. The two resulting Boolean features are adapted to the rest of the clause by equipping each clause with its own team of SSLs, which update the bounds during the learning process. Two standard TAs finally decide whether to include the resulting features as part of the clause. In this way, only four automata altogether represent one continuous feature (instead of potentially h…

Stochastic Searching on the Line automatonBoosting (machine learning)decision support systemTK7800-8360Computer Networks and CommunicationsComputer scienceDiscriminative modelFeature (machine learning)Electrical and Electronic EngineeringArtificial neural networkrule-based learninginterpretable machine learninginterpretable AISparse approximationAutomatonRandom forestSupport vector machineVDP::Teknologi: 500Tsetlin MachineXAIHardware and ArchitectureControl and Systems EngineeringSignal ProcessingElectronicsTsetlin automataAlgorithm
researchProduct

Machine Learning: An Overview and Applications in Pharmacogenetics.

2021

This narrative review aims to provide an overview of the main Machine Learning (ML) techniques and their applications in pharmacogenetics (such as antidepressant, anti-cancer and warfarin drugs) over the past 10 years. ML deals with the study, the design and the development of algorithms that give computers capability to learn without being explicitly programmed. ML is a sub-field of artificial intelligence, and to date, it has demonstrated satisfactory performance on a wide range of tasks in biomedicine. According to the final goal, ML can be defined as Supervised (SML) or as Unsupervised (UML). SML techniques are applied when prediction is the focus of the research. On the other hand, UML…

Structure (mathematical logic)Pharmacogenetics Supervised machine learning Unsupervised machine learningComputer sciencebusiness.industryComputational BiologyReviewQH426-470Machine learningcomputer.software_genreOutcome (game theory)Machine LearningUnified Modeling LanguagePharmacogeneticsGeneticsUnsupervised learningNarrative reviewsupervised machine learningArtificial intelligencebusinesscomputerunsupervised machine learningGenetics (clinical)BiomedicinePharmacogeneticscomputer.programming_languageGenes
researchProduct

Effectively Predicting the Presence of Coronary Heart Disease Using Machine Learning Classifiers

2022

Coronary heart disease is one of the major causes of deaths around the globe. Predicating a heart disease is one of the most challenging tasks in the field of clinical data analysis. Machine learning (ML) is useful in diagnostic assistance in terms of decision making and prediction on the basis of the data produced by healthcare sector globally. We have also perceived ML techniques employed in the medical field of disease prediction. In this regard, numerous research studies have been shown on heart disease prediction using an ML classifier. In this paper, we used eleven ML classifiers to identify key features, which improved the predictability of heart disease. To introduce the prediction …

Support Vector MachineHeart DiseasesCoronary DiseaseBiochemistryAtomic and Molecular Physics and OpticsAnalytical ChemistryMachine LearningVDP::Teknologi: 500heart disease dataset; disease prediction; supervised learning; machine learningHumansVDP::Medisinske Fag: 700Neural Networks ComputerElectrical and Electronic EngineeringInstrumentationAlgorithmsSensors; Volume 22; Issue 19; Pages: 7227
researchProduct

Mixed Fault Classification of Sensorless PMSM Drive in Dynamic Operations Based on External Stray Flux Sensors

2022

This paper aims to classify local demagnetisation and inter-turn short-circuit (ITSC) on position sensorless permanent magnet synchronous motors (PMSM) in transient states based on external stray flux and learning classifier. Within the framework, four supervised machine learning tools were tested: ensemble decision tree (EDT), k-nearest neighbours (KNN), support vector machine (SVM), and feedforward neural network (FNN). All algorithms are trained on datasets from one operational profile but tested on other different operation profiles. Their input features or spectrograms are computed from resampled time-series data based on the estimated position of the rotor from one stray flux sensor t…

Support Vector Machinedemagnetisationinter-turn short circuitChemical technologydemagnetisation; inter-turn short circuit; machine learning; permanent magnet synchronous motor; variable speed; variable loadTP1-1185BiochemistryAtomic and Molecular Physics and OpticsAnalytical ChemistryComputingMethodologies_PATTERNRECOGNITIONmachine learningpermanent magnet synchronous motorvariable speedVDP::Teknologi: 500::Maskinfag: 570Magnetsvariable loadNeural Networks ComputerSupervised Machine LearningElectrical and Electronic EngineeringInstrumentationAlgorithmsSensors (Basel, Switzerland)
researchProduct

Deep Gaussian Processes for Geophysical Parameter Retrieval

2018

This paper introduces deep Gaussian processes (DGPs) for geophysical parameter retrieval. Unlike the standard full GP model, the DGP accounts for complicated (modular, hierarchical) processes, provides an efficient solution that scales well to large datasets, and improves prediction accuracy over standard full and sparse GP models. We give empirical evidence of performance for estimation of surface dew point temperature from infrared sounding data.

Surface (mathematics)Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine Learning010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesFOS: Physical sciences02 engineering and technologyAtmospheric model01 natural sciencesStatistics - ApplicationsMachine Learning (cs.LG)Physics - Geophysicssymbols.namesakeKernel (linear algebra)FOS: Electrical engineering electronic engineering information engineeringApplications (stat.AP)Electrical Engineering and Systems Science - Signal ProcessingGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryGeophysics (physics.geo-ph)Depth soundingDew pointsymbolsGlobal Positioning SystembusinessAlgorithmIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Fusing optical and SAR time series for LAI gap filling with multioutput Gaussian processes

2019

The availability of satellite optical information is often hampered by the natural presence of clouds, which can be problematic for many applications. Persistent clouds over agricultural fields can mask key stages of crop growth, leading to unreliable yield predictions. Synthetic Aperture Radar (SAR) provides all-weather imagery which can potentially overcome this limitation, but given its high and distinct sensitivity to different surface properties, the fusion of SAR and optical data still remains an open challenge. In this work, we propose the use of Multi-Output Gaussian Process (MOGP) regression, a machine learning technique that learns automatically the statistical relationships among…

Synthetic aperture radarFOS: Computer and information sciencesComputer Science - Machine LearningTeledetecció010504 meteorology & atmospheric sciencesMean squared error0208 environmental biotechnologySoil ScienceFOS: Physical sciencesMachine Learning (stat.ML)02 engineering and technology01 natural sciencesArticlelaw.inventionMachine Learning (cs.LG)symbols.namesakelawStatistics - Machine LearningFOS: Electrical engineering electronic engineering information engineeringComputers in Earth SciencesRadarLeaf area indexCluster analysisGaussian process0105 earth and related environmental sciencesRemote sensingMathematicsImage and Video Processing (eess.IV)Processos estocàsticsGeologyElectrical Engineering and Systems Science - Image and Video ProcessingSensor fusionRegression020801 environmental engineeringPhysics - Data Analysis Statistics and ProbabilitysymbolsData Analysis Statistics and Probability (physics.data-an)Imatges Processament
researchProduct

On the impact of forgetting on learning machines

1995

People tend not to have perfect memories when it comes to learning, or to anything else for that matter. Most formal studies of learning, however, assume a perfect memory. Some approaches have restricted the number of items that could be retained. We introduce a complexity theoretic accounting of memory utilization by learning machines. In our new model, memory is measured in bits as a function of the size of the input. There is a hierarchy of learnability based on increasing memory allotment. The lower bound results are proved using an unusual combination of pumping and mutual recursion theorem arguments. For technical reasons, it was necessary to consider two types of memory : long and sh…

Theoretical computer scienceActive learning (machine learning)Computer scienceSemi-supervised learningMutual recursionArtificial IntelligenceInstance-based learningHierarchyForgettingKolmogorov complexitybusiness.industryLearnabilityAlgorithmic learning theoryOnline machine learningInductive reasoningPumping lemma for regular languagesTerm (time)Computational learning theoryHardware and ArchitectureControl and Systems EngineeringArtificial intelligenceSequence learningbusinessSoftwareCognitive psychologyInformation SystemsJournal of the ACM
researchProduct

Signal Spectrum-Based Machine Learning Approach for Fault Prediction and Maintenance of Electrical Machines

2022

Industrial revolution 4.0 has enabled the advent of new technological advancements, including the introduction of information technology with physical devices. The implementation of information technology in industrial applications has helped streamline industrial processes and make them more cost-efficient. This combination of information technology and physical devices gave birth to smart devices, which opened up a new research area known as the Internet of Things (IoT). This has enabled researchers to help reduce downtime and maintenance costs by applying condition monitoring on electrical machines utilizing machine learning algorithms. Although the industry is trying to move from schedu…

VDP::Teknologi: 500Control and OptimizationRenewable Energy Sustainability and the EnvironmentEnergy Engineering and Power TechnologyBuilding and ConstructionElectrical and Electronic Engineeringartificial intelligence; fault prediction; predictive maintenance; machine learning; neural networkEngineering (miscellaneous)Energy (miscellaneous)
researchProduct