Search results for " Materials Science"
showing 10 items of 7414 documents
Effective strain manipulation of the antiferromagnetic state of polycrystalline NiO
2021
As a candidate material for applications such as magnetic memory, polycrystalline antiferromagnets offer the same robustness to external magnetic fields, THz spin dynamics, and lack of stray field as their single crystalline counterparts, but without the limitation of epitaxial growth and lattice matched substrates. Here, we first report the detection of the average Neel vector orientiation in polycrystalline NiO via spin Hall magnetoresistance (SMR). Secondly, by applying strain through a piezo-electric substrate, we reduce the critical magnetic field required to reach a saturation of the SMR signal, indicating a change of the anisotropy. Our results are consistent with polycrystalline NiO…
Amorphous ultra-wide bandgap ZnOx thin films deposited at cryogenic temperatures
2020
Crystalline wurtzite zinc oxide (w-ZnO) can be used as a wide band gap semiconductor for light emitting devices and for transparent or high temperature electronics. The use of amorphous zinc oxide (a-ZnO) can be an advantage in these applications. In this paper we report on X-ray amorphous a-ZnOx thin films (~500 nm) deposited at cryogenic temperatures by reactive magnetron sputtering. The substrates were cooled by a nitrogen flow through the copper substrate holder during the deposition. The films were characterized by X-ray diffraction (XRD), Raman, infrared, UV-Vis-NIR spectroscopies, and ellipsometry. The a-ZnOx films on glass and Ti substrates were obtained at the substrate holder temp…
Dielectric response of BaTiO3 electronic states under AC fields via microsecond time-resolved X-ray absorption spectroscopy
2021
Abstract For the first time, the dielectric response of a BaTiO 3 thin film under an AC electric field is investigated using microsecond time-resolved X-ray absorption spectroscopy at the Ti K-edge in order to clarify correlated contributions of each constituent atom on the electronic states. Intensities of the pre-edge e g peak and shoulder structure just below the main edge increase with an increase in the amplitude of the applied electric field, whereas that of the main peak decreases in an opposite manner. Based on the multiple scattering theory, the increase and decrease of the e g and main peaks are simulated for different Ti off-center displacements. Our results indicate that these s…
45° sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers
2017
We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45° period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully …
Simultaneous Synthesis and Consolidation of Nanostructured MoSi2
2002
A new process combining electric field activation and the imposition of pressure from mechanically activated powder mixtures is demonstrated as a means to simultaneously synthesize and densify nano-MoSi2 in one step. Nanophase reactants (Mo + 2Si) produced by mechanical activation are reacted by field activation with the simultaneous application of a uniaxial pressure. Mo + 2Si powders were comilled in a specially designed planetary mill to obtain nanometric reactants but to avoid formation of any product phases. These were then subjected to high alternating currents (1600 A) and pressures of 106 MPa. Under these conditions, a reaction is initiated and completed within a short period of tim…
Radial composition of single InGaN nanowires: a combined study by EDX, Raman spectroscopy, and X-ray diffraction
2013
A consistent path for phase determination based on transmission electron microscopy techniques and supporting simulations.
2018
This work addresses aspects for the analysis of industrial relevant materials via transmission electron microscopy (TEM). The complex phase chemistry and structural diversity of these materials require several characterization techniques to be employed simultaneously; unfortunately, different characterization techniques often lack connection to yield a complete and consistent picture. This paper describes a continuous path, starting with the acquisition of 3D diffraction data - alongside classical high-resolution imaging techniques - and linking the structural characterization of hard metal industrial samples with energy-loss fine-structure simulations, quantitative electron energy-loss (EE…
Formation of dislocations and hardening of LiF under high-dose irradiation with 5–21 MeV 12C ions
2017
R. Zabels, I. Manika, J. Maniks, and R.Grants acknowledge the national project IMIS2, and A. Dauletbekova, M. Baizhumanov, and M. Zdorovets the Ministry of Education and Science of the Republic of Kazakhstan for the financial support.
Preface for MMM 2016 focus issue
2017
International audience
Production of Nano-Sized Co<sub>3</sub>O<sub>4</sub> by Pyrolysis of Organic Extracts
2016
The most promising application field of materials based on nano-sized Co3O4 is catalysis. The method of production is one of the factors, which greatly affects the catalytic activity of Co3O4 catalysts. The aim of this research is to study possibilities of a new promising extractive-pyrolytic method (EPM) for the production of Co3O4 nanopowders and silica- and ceria-supported Co3O4 nanocomposites. Solutions of cobalt hexanoate in hexanoic acid and trioctylammonium tetrachlorocobaltate in toluene preliminary produced by solvent extraction were used as precursors. The precursors’ thermal stability, phase composition, morphology and the magnetic properties of the final products of pyrolysis we…