Search results for " Mathematical"
showing 10 items of 686 documents
Finite 2-groups with odd number of conjugacy classes
2016
In this paper we consider finite 2-groups with odd number of real conjugacy classes. On one hand we show that if $k$ is an odd natural number less than 24, then there are only finitely many finite 2-groups with exactly $k$ real conjugacy classes. On the other hand we construct infinitely many finite 2-groups with exactly 25 real conjugacy classes. Both resuls are proven using pro-$p$ techniques and, in particular, we use the Kneser classification of semi-simple $p$-adic algebraic groups.
Real groups and Sylow 2-subgroups
2016
Abstract If G is a finite real group and P ∈ Syl 2 ( G ) , then P / P ′ is elementary abelian. This confirms a conjecture of Roderick Gow. In fact, we prove a much stronger result that implies Gow's conjecture.
Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics
2007
The original publication is available at www.springerlink.com ; ISBN 978-3-540-75519-7 ; ISSN 0302-9743 (Print) 1611-3349 (Online); International audience; We present a complete, exact and efficient implementation to compute the adjacency graph of an arrangement of quadrics, \ie surfaces of algebraic degree~2. This is a major step towards the computation of the full 3D arrangement. We enhanced an implementation for an exact parameterization of the intersection curves of two quadrics, such that we can compute the exact parameter value for intersection points and from that the adjacency graph of the arrangement. Our implementation is {\em complete} in the sense that it can handle all kinds of…
A note on a result of Guo and Isaacs about p-supersolubility of finite groups
2016
In this note, global information about a finite group is obtained by assuming that certain subgroups of some given order are S-semipermutable. Recall that a subgroup H of a finite group G is said to be S-semipermutable if H permutes with all Sylow subgroups of G of order coprime to . We prove that for a fixed prime p, a given Sylow p-subgroup P of a finite group G, and a power d of p dividing such that , if is S-semipermutable in for all normal subgroups H of P with , then either G is p-supersoluble or else . This extends the main result of Guo and Isaacs in (Arch. Math. 105:215-222 2015). We derive some theorems that extend some known results concerning S-semipermutable subgroups.
On the supersoluble hypercentre of a finite group
2016
[EN] We give some sufficient conditions for a normal p-subgroup P of a finite group G to have every G-chief factor below it cyclic. The S-permutability of some p-subgroups of O^p(G)plays an important role. Some known results can be reproved and some others appear as corollaries of our main theorems.
About Aczél Inequality and Some Bounds for Several Statistical Indicators
2020
In this paper, we will study a refinement of the Cauchy&ndash
The Asynchronous Leontief Model
1992
International audience; The traditional dynamic Leontief model is synchronous: every vertex acts simultaneously. A model with delays of action has been proposed, but it still remains synchronous. In this paper we propose an asynchronous version of the model that allows realistic computations. We fiurnish an algorithm and a program.
On algebras of polynomial codimension growth
2016
Let A be an associative algebra over a field F of characteristic zero and let $$c_n(A), n=1, 2, \ldots $$ , be the sequence of codimensions of A. It is well-known that $$c_n(A), n=1, 2, \ldots $$ , cannot have intermediate growth, i.e., either is polynomially bounded or grows exponentially. Here we present some results on algebras whose sequence of codimensions is polynomially bounded.
Slopes of Non-hyperelliptic Fibrations in Positive Characteristic
2016
Maximal function estimates and self-improvement results for Poincaré inequalities
2018
Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces. peerReviewed