Search results for " Mathematical"
showing 10 items of 686 documents
Representation Theorems for Indefinite Quadratic Forms Revisited
2010
The first and second representation theorems for sign-indefinite, not necessarily semi-bounded quadratic forms are revisited. New straightforward proofs of these theorems are given. A number of necessary and sufficient conditions ensuring the second representation theorem to hold is proved. A new simple and explicit example of a self-adjoint operator for which the second representation theorem does not hold is also provided.
Self-affine sets in analytic curves and algebraic surfaces
2018
We characterize analytic curves that contain non-trivial self-affine sets. We also prove that compact algebraic surfaces do not contain non-trivial self-affine sets. peerReviewed
The differential Galois group of the rational function field
2020
We determine the absolute differential Galois group of the field $\mathbb{C}(x)$ of rational functions: It is the free proalgebraic group on a set of cardinality $|\mathbb{C}|$. This solves a longstanding open problem posed by B.H. Matzat. For the proof we develop a new characterization of free proalgebraic groups in terms of split embedding problems, and we use patching techniques in order to solve a very general class of differential embedding problems. Our result about $\mathbb{C}(x)$ also applies to rational function fields over more general fields of coefficients.
An Introduction to Hodge Structures
2015
We begin by introducing the concept of a Hodge structure and give some of its basic properties, including the Hodge and Lefschetz decompositions. We then define the period map, which relates families of Kahler manifolds to the families of Hodge structures defined on their cohomology, and discuss its properties. This will lead us to the more general definition of a variation of Hodge structure and the Gauss-Manin connection. We then review the basics about mixed Hodge structures with a view towards degenerations of Hodge structures; including the canonical extension of a vector bundle with connection, Schmid’s limiting mixed Hodge structure and Steenbrink’s work in the geometric setting. Fin…
Image Milnor number and 𝒜 e -codimension for maps between weighted homogeneous irreducible curves
2019
Abstract Let (X, 0) ⊂ (ℂ n , 0) be an irreducible weighted homogeneous singularity curve and let f : (X, 0) → (ℂ2, 0) be a finite map germ, one-to-one and weighted homogeneous with the same weights of (X, 0). We show that 𝒜 e -codim(X, f) = μI (f), where the 𝒜 e -codimension 𝒜 e -codim(X, f) is the minimum number of parameters in a versal deformation and μI (f) is the image Milnor number, i.e. the number of vanishing cycles in the image of a stabilization of f.
On the topology of surfaces with the generalised simple lift property.
2020
In this paper, we study the geometry of surfaces with the generalised simple lift property. This work generalises previous results by Bernstein and Tinaglia, and it is motivated by the fact that leaves of a minimal lamination obtained as a limit of a sequence of properly embedded minimal disks satisfy the generalised simple lift property.
Improved Bounds for Hermite–Hadamard Inequalities in Higher Dimensions
2019
Let $\Omega \subset \mathbb{R}^n$ be a convex domain and let $f:\Omega \rightarrow \mathbb{R}$ be a positive, subharmonic function (i.e. $\Delta f \geq 0$). Then $$ \frac{1}{|\Omega|} \int_{\Omega}{f dx} \leq \frac{c_n}{ |\partial \Omega| } \int_{\partial \Omega}{ f d\sigma},$$ where $c_n \leq 2n^{3/2}$. This inequality was previously only known for convex functions with a much larger constant. We also show that the optimal constant satisfies $c_n \geq n-1$. As a byproduct, we establish a sharp geometric inequality for two convex domains where one contains the other $ \Omega_2 \subset \Omega_1 \subset \mathbb{R}^n$: $$ \frac{|\partial \Omega_1|}{|\Omega_1|} \frac{| \Omega_2|}{|\partial \Ome…
Singular levels and topological invariants of Morse Bott integrable systems on surfaces
2016
Abstract We classify up to homeomorphisms closed curves and eights of saddle points on orientable closed surfaces. This classification is applied to Morse Bott foliations and Morse Bott integrable systems allowing us to define a complete invariant. We state also a realization Theorem based in two transformations and one generator (the foliation of the sphere with two centers).
On the interior regularity of weak solutions to the 2-D incompressible Euler equations
2016
We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the spirit of De Giorgi–Nash–Moser, showing that local weak solutions are exponentially integrable, uniformly in time, under minimal integrability conditions. This is a Serrin-type interior regularity result $$\begin{aligned} u \in L_\mathrm{loc}^{2+\varepsilon }(\Omega _T) \implies \mathrm{local\ regularity} \end{aligned}$$ for weak solutions in the energy space $$L_t^\infty L_x^2$$ , satisfying appropriate vorticity estimates. We also obtain impr…
Large-x Analysis of an Operator-Valued Riemann–Hilbert Problem
2015
International audience; The purpose of this paper is to push forward the theory of operator-valued Riemann-Hilbert problems and demonstrate their effectiveness in respect to the implementation of a non-linear steepest descent method a la Deift-Zhou. In this paper, we demonstrate that the operator-valued Riemann-Hilbert problem arising in the characterization of so-called c-shifted integrable integral operators allows one to extract the large-x asymptotics of the Fredholm determinant associated with such operators.