Search results for " Model"
showing 10 items of 16868 documents
Spectral biases in tree-ring climate proxies
2013
Seamless quantification of past and present climate variability is needed to understand the Earth’s climate well enough to make accurate predictions for the future. This study addresses whether tree-ring-dominated proxy data properly represent the frequency spectrum of true climate variability. The results challenge the validity of detection and attribution investigations based on these data. External forcing and internal dynamics result in climate system variability ranging from sub-daily weather to multi-centennial trends and beyond1,2. State-of-the-art palaeoclimatic methods routinely use hydroclimatic proxies to reconstruct temperature (for example, refs 3, 4), possibly blurring differe…
Vibration Tests and Structural Identification of the Bell Tower of Palermo Cathedral
2019
Background: The recent seismic events in Italy have underlined once more the need for seismic prevention for historic constructions of architectural interest and in general, the building heritage. During the above-mentioned earthquakes, different masonry monumental buildings have been lost due to the intrinsic vulnerability and ageing that reduced the structural member strength. This has made the community understand more that prevention is a necessary choice for the protection of monuments. Objective: The paper aims at demonstrating a strategy of investigation providing the possibility of health judgment, identifying a computational model for the assessment of structural capacity under se…
Joint Gaussian processes for inverse modeling
2017
Solving inverse problems is central in geosciences and remote sensing. Very often a mechanistic physical model of the system exists that solves the forward problem. Inverting the implied radiative transfer model (RTM) equations numerically implies, however, challenging and computationally demanding problems. Statistical models tackle the inverse problem and predict the biophysical parameter of interest from radiance data, exploiting either in situ data or simulated data from an RTM. We introduce a novel nonlinear and nonparametric statistical inversion model which incorporates both real observations and RTM-simulated data. The proposed Joint Gaussian Process (JGP) provides a solid framework…
Automatic emulator and optimized look-up table generation for radiative transfer models
2017
This paper introduces an automatic methodology to construct emulators for costly radiative transfer models (RTMs). The proposed method is sequential and adaptive, and it is based on the notion of the acquisition function by which instead of optimizing the unknown RTM underlying function we propose to achieve accurate approximations. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of Gaussian processes (GPs) with the accurate design of an acquisition function that favors sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of the method in toy examples and for the construction of an…
Multioutput Automatic Emulator for Radiative Transfer Models
2018
This paper introduces a methodology to construct emulators of costly radiative transfer models (RTMs). The proposed methodology is sequential and adaptive, and it is based on the notion of acquisition functions in Bayesian optimization. Here, instead of optimizing the unknown underlying RTM function, one aims to achieve accurate approximations. The Automatic Multi-Output Gaussian Process Emulator (AMO-GAPE) methodology combines the interpolation capabilities of Gaussian processes (GPs) with the accurate design of an acquisition function that favors sampling in low density regions and flatness of the interpolation function. We illustrate the promising capabilities of the method for the const…
Controlled time integration for the numerical simulation of meteor radar reflections
2016
We model meteoroids entering the Earth[U+05F3]s atmosphere as objects surrounded by non-magnetized plasma, and consider efficient numerical simulation of radar reflections from meteors in the time domain. Instead of the widely used finite difference time domain method (FDTD), we use more generalized finite differences by applying the discrete exterior calculus (DEC) and non-uniform leapfrog-style time discretization. The computational domain is presented by convex polyhedral elements. The convergence of the time integration is accelerated by the exact controllability method. The numerical experiments show that our code is efficiently parallelized. The DEC approach is compared to the volume …
Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging
2017
Made available in DSpace on 2018-12-11T17:11:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-03-01 Suomen Akatemia Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that has recently become available to small UAVs. This study investigated the performance of UAV-based photogrammetry and hyperspectral imaging in individual tree detection and tree species classification in boreal forests. Eleven test sites with 4151 reference trees repr…
Convolutional Neural Networks for Cloud Screening: Transfer Learning from Landsat-8 to Proba-V
2018
Cloud detection is a key issue for exploiting the information from Earth observation satellites multispectral sensors. For Proba-V, cloud detection is challenging due to the limited number of spectral bands. Advanced machine learning methods, such as convolutional neural networks (CNN), have shown to work well on this problem provided enough labeled data. However, simultaneous collocated information about the presence of clouds is usually not available or requires a great amount of manual labor. In this work, we propose to learn from the available Landsat −8 cloud masks datasets and transfer this learning to solve the Proba-V cloud detection problem. CNN are trained with Landsat images adap…
Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks
2020
Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…
Supporting group decision makers to locate temporary relief distribution centres after sudden-onset disasters
2020
International audience; In the humanitarian response, multiple decision-makers (DMs) need to collaborate in various problems, such as locating temporary relief distribution centres (RDCs). Several studies have argued that maximising demand coverage, reducing logistics costs and minimising response time are among the critical objectives when locating RDCs after a sudden-onset disaster. However, these objectives are often conflicting and the trade-offs can considerably complicate the situation for finding a consensus.To address the challenge and support the DMs, we suggest investigating the stability of non-dominated alternatives derived from a multi-objective model based on Monte Carlo Simul…