Search results for " NANOSTRUCTURES"
showing 10 items of 128 documents
Highly selective detection of Epinephrine at oxidized Single-Wall Carbon Nanohorns modified Screen Printed Electrodes (SPEs)
2014
Oxidized Single-Wall Carbon Nanohorns (o-SWCNHs) were used, for the first time, to assemble chemically modified Screen Printed Electrodes (SPEs) selective towards the electrochemical detection of Epinephrine (Ep), in the presence of Serotonine-5-HT (S-5HT), Dopamine (DA), Nor-Epineprhine (Nor-Ep), Ascorbic Acid (AA), Acetaminophen (Ac) and Uric Acid (UA). The Ep neurotransmitter was detected by using Differential Pulse Voltammetry (DPV), in a wide linear range of concentration (2-2500 μM) with high sensitivity (55.77 A M(-1) cm(-2)), very good reproducibility (RSD% ranging from 2 to 10 for different SPEs), short response time for each measurement (only 2s) and low detection of limit (LOD=0.…
Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application
2016
AbstractA combination of photocurrent and photothermal spectroscopic techniques is applied to experimentally quantify the useful and parasitic absorption of light in thin hydrogenated microcrystalline silicon (μc-Si:H) films incorporating optimized metal nanoparticle arrays, located at the rear surface, for improved light trapping via resonant plasmonic scattering. The photothermal technique accounts for the total absorptance and the photocurrent signal accounts only for the photons absorbed in the μc-Si:H layer (useful absorptance); therefore, the method allows for independent quantification of the useful and parasitic absorptance of the plasmonic (or any other) light trapping structure. W…
Optically assisted trapping with high-permittivity dielectric rings: Towards optical aerosol filtration
2016
Controlling the transport, trapping, and filtering of nanoparticles is important for many applications. By virtue of their weak response to gravity and their thermal motion, various physical mechanisms can be exploited for such operations on nanoparticles. However, the manipulation based on optical forces is potentially most appealing since it constitutes a highly deterministic approach. Plasmonic nanostructures have been suggested for this purpose, but they possess the disadvantages of locally generating heat and trapping the nanoparticles directly on surface. Here, we propose the use of dielectric rings made of high permittivity materials for trapping nanoparticles. Thanks to their abilit…
Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches
2009
To simulate the perfect single-walled boron nitride nanotubes and nanoarches with armchair- and zigzag-type chiralities and uniform diameter of � 5 nm, we have constructed their one-dimensional (1D) periodic models. In this study, we have compared the calculated properties of nanotubes with those for both hexagonal and cubic phases of bulk: bond lengths, binding energies per B–N bond, effective atomic charges as well as parameters of total and projected one-electron densities of states. For both phases of BN bulk, we have additionally verified their lattice constants. In the density functional theory (DFT), calculations performed using formalism of the localized Gaussian-type atomic functio…
Photocurrent Spectroscopy Applied to the Characterization of Compositionally and Structurally Graded Materials: from Thin Films to Nanostructures
2010
Optical characterization of individual GaAs quantum dots grown with height control technique
2013
We show that the epitaxial growth of height-controlled GaAs quantum dots, leading to the reduction of the inhomogeneous emission bandwidth, produces individual nanostructures of peculiar morphology. Besides the height controlled quantum dots, we observe nanodisks formation. Exploiting time resolved and spatially resolved photoluminescence we establish the decoupling between quantum dots and nanodisks and demonstrate the high optical properties of the individual quantum dots, despite the processing steps needed for height control. © 2013 AIP Publishing LLC.
Novel Immune TiO2 Photoluminescence Biosensors for Leucosis Detection
2012
Abstract Novel immune photoluminescent biosensor, based on TiO2 nanoparticles, for retroviral leucosis detection has been developed. The photoluminescence spectra were excited by solid state laser with wavelength 355 nm and measured in the range of 370-800 nm. Original photoluminescence spectrum of TiO2 nanoparticles showed wide maximum at 515 nm. The biosensitive layer was formed by immobilization of retroviral leucosis antigens on the surface of TiO2 nanoparticles. Immobilization of antigens on TiO2 surface led to UV-shift of photoluminescence spectrum and increase of PL intensity. The response to different concentrations of retroviral leucosis antibodies has been measured. The decrease o…
Plasmonic nanostructures for light trapping in thin-film solar cells
2019
M.J.M. acknowledges funding from FCT through the grant SFRH/BPD/115566/2016. ALTALUZ (Reference PTDC/CTM-ENE/5125/2014). The optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) st…
Plenty of motion at the bottom: atomically thin liquid gold membrane
2015
The discovery of graphene some ten years ago was the first proof of a free-standing two-dimensional (2D) solid phase. Here, using quantum molecular dynamics simulations of nanoscale gold patches suspended in graphene pores, we predict the existence of an atomically thin, free-standing 2D liquid phase. The liquid phase, enabled by the exceptional planar stability of gold due to relativistic effects, demonstrates extreme fluxionality of metal nanostructures and opens possibilities for a variety of nanoscale phenomena.
Exciton Gas Compression and Metallic Condensation in a Single Semiconductor Quantum Wire
2008
4 páginas, 5 figuras.-- PACS numbers: 78.67.Lt, 71.30.+h, 71.35. -y.-- Comunicación presentada a la International Conference on the Physics of Semiconductors (ICPS) celebrada en Rio de Jqaneiro (Brasil/2008).