Search results for " Neural Networks"

showing 10 items of 390 documents

Mašīnmācīšanās uzdevumu risināšanai interaktīvās tekstuālās vidēs

2021

Interaktīvas tekstuālas piedzīvojumu spēles var izmantot, lai pārbaudītu mašīnmācīšanās aģentu spējas tikt galā ar dažādiem izaicinājumiem, kas saistīti ar dabiskās valodas izpratni, problēmu risināšanu un atbilžu meklēšanu, vai tādas darbības izvēles stratēģiju apgūšana, kas vispārinās uz iepriekš nesastaptām vidēm. TextWorld platforma ir šādiem pētījumiem domāts ietvars un palīgrīki, ar kuru palīdzību var darbināt daudzas iepriekšpublicētas teksta piedzīvojumu spēles, vai arī definēt un ģenerēt jaunas spēles, dažādās sarežģītības pakāpēs un gandrīz bezgalīgās variācijās. Šajā darbā aprakstīta tāda algoritmiska orākula (oracle) ieviešana, kas var veiksmīgi atrisināt spēles no 3 dažādām iep…

Datorzinātneinteraktīvas tekstuālas piedzīvojumu spēlesMeta­learningmašīnmācīšanāsArtificial Neural NetworksText Adventure Games
researchProduct

Mašīnmācīšanās pielietojums sporta notikumu prognozēšanā

2017

Dažādu notikumu prognozēšana cilvēcei ir vienmēr bijusi aktuāla. Mūsdienās ir attīstījušās tehnoloģijas, lai to būtu iespējams paveikt balstoties uz pagātnes datiem. Darbā tiek apskatīta sporta notikumu prognozēšana, konkrēti futbola maču iznākumi. Tiek apskatītas vairākas mašīnmācīšanās metodes, kas būtu piemērotākās šī uzdevuma veikšanai. Tiek realizēti un optimizēti divi multi-slāņu perceptrona tīkli un viens vairākkārtējā neironu tīkla, konkrēti LSTM algoritms. Ar tiem tiek veikta simulācija izmantojot reālus datus. Vienā no simulācijām tiek sasniegts pozitīvs rezultāts, sezonas laikā algoritms gūst 65% peļņu.

Datorzinātnemašīnmācīšanās algoritmiprognozēšanaLong Short Term MemoryMulti-layer PerceptronRecurrent Neural Networks
researchProduct

A sentence based system for measuring syntax complexity using a recurrent deep neural network

2018

In this paper we present a deep neural network model capable of inducing the rules that identify the syntax complexity of an Italian sentence. Our system, beyond the ability of choosing if a sentence needs of simplification, gives a score that represent the confidence of the model during the process of decision making which could be representative of the sentence complexity. Experiments have been carried out on one public corpus created specifically for the problem of text-simplification.

Deep Neural NetworksComputer Science (all)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGText simplificationDeep neural networkNatural Language Processing
researchProduct

A recurrent deep neural network model to measure sentence complexity for the Italian Language

2019

Text simplification (TS) is a natural language processing task devoted to the modification of a text in such a way that the grammar and structure of the phrases is greatly simplified, preserving the underlying meaning and information contents. In this paper we give a contribution to the TS field presenting a deep neural network model able to detect the complexity of italian sentences. In particular, the system gives a score to an input text that identifies the confidence level during the decision making process and that could be interpreted as a measure of the sentence complexity. Experiments have been carried out on one public corpus of Italian texts created specifically for the task of TS…

Deep Neural NetworksText Simplification Natural Language Processing Deep Neural NetworksSettore INF/01 - InformaticaComputingMethodologies_DOCUMENTANDTEXTPROCESSINGAutomatic Text Complexity EvaluationNLP
researchProduct

Mapping and holistic design of natural hydraulic lime mortars

2020

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cemconres.2020.106167.

Design0211 other engineering and technologies02 engineering and technologyengineering.materialCompatibilityFlexural strengthEngenharia e Tecnologia::Engenharia CivilConsistency (statistics)021105 building & constructionGeneral Materials ScienceGeotechnical engineeringMathematicsScience & TechnologyAggregate (composite)Artificial neural networksMonument protectionHydraulic limeExperimental dataBuilding and Construction021001 nanoscience & nanotechnologyCompressive strengthCompatibility (mechanics):Engenharia Civil [Engenharia e Tecnologia]engineeringNatural hydraulic limeMortar0210 nano-technologyMortar characteristicsCement and Concrete Research
researchProduct

Capabilities of Ultrametric Automata with One, Two, and Three States

2016

Ultrametric automata use p-adic numbers to describe the random branching of the process of computation. Previous research has shown that ultrametric automata can have a significant decrease in computing complexity. In this paper we consider the languages that can be recognized by one-way ultrametric automata with one, two, and three states. We also show an example of a promise problem that can be solved by ultrametric integral automaton with three states.

Discrete mathematicsBinary treeComputationPrime number020206 networking & telecommunications02 engineering and technologyNonlinear Sciences::Cellular Automata and Lattice GasesCondensed Matter::Disordered Systems and Neural NetworksAutomatonTuring machinesymbols.namesakeRegular language0202 electrical engineering electronic engineering information engineeringsymbolsMathematics::Metric Geometry020201 artificial intelligence & image processingPromise problemUltrametric spaceComputer Science::DatabasesComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

On the Hierarchy Classes of Finite Ultrametric Automata

2015

This paper explores the language classes that arise with respect to the head count of a finite ultrametric automaton. First we prove that in the one-way setting there is a language that can be recognized by a one-head ultrametric finite automaton and cannot be recognized by any k-head non-deterministic finite automaton. Then we prove that in the two-way setting the class of languages recognized by ultrametric finite k-head automata is a proper subclass of the class of languages recognized by (k + 1)-head automata. Ultrametric finite automata are similar to probabilistic and quantum automata and have only just recently been introduced by Freivalds. We introduce ultrametric Turing machines an…

Discrete mathematicsClass (set theory)TheoryofComputation_COMPUTATIONBYABSTRACTDEVICESFinite-state machineHierarchy (mathematics)Nonlinear Sciences::Cellular Automata and Lattice GasesCondensed Matter::Disordered Systems and Neural NetworksAutomatonAlgebraTuring machinesymbols.namesakeTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESsymbolsMathematics::Metric GeometryQuantum finite automataAutomata theoryUltrametric spaceComputer Science::Formal Languages and Automata TheoryMathematicsofComputing_DISCRETEMATHEMATICSMathematics
researchProduct

Theory of heterogeneous viscoelasticity

2015

We review a new theory of viscoelasticity of a glass-forming viscous liquid near and below the glass transition. In our model we assume that each point in the material has a specific viscosity, which varies randomly in space according to a fluctuating activation free energy. We include a Maxwellian elastic term and assume that the corresponding shear modulus fluctuates as well with the same distribution as that of the activation barriers. The model is solved in coherent-potential approximation (CPA), for which a derivation is given. The theory predicts an Arrhenius-type temperature dependence of the viscosity in the vanishing-frequency limit, independent of the distribution of the activatio…

Distribution (number theory)FOS: Physical sciences02 engineering and technologyActivation energyCondensed Matter - Soft Condensed MatterViscous liquidSpace (mathematics)01 natural sciencesmechanical property evaluationViscoelasticityShear modulusViscosity0103 physical sciencesCoherent potential approximation010306 general physicsviscoelasticityglassPhysicsDisordered Systems and Neural Networks (cond-mat.dis-nn)MechanicsCondensed Matter - Disordered Systems and Neural Networks021001 nanoscience & nanotechnologyCondensed Matter Physicsglass relaxationcoherent potential approximation; glass; glass relaxation; mechanical property evaluation; metallic glasses; viscoelasticity; Condensed Matter PhysicsSoft Condensed Matter (cond-mat.soft)metallic glasses0210 nano-technologycoherent potential approximation
researchProduct

Consumer Neuroscience-Based Metrics Predict Recall, Liking and Viewing Rates in Online Advertising

2017

[EN] The purpose of the present study is to investigate whether the effectiveness of a new ad on digital channels (YouTube) can be predicted by using neural networks and neuroscience-based metrics (brain response, heart rate variability and eye tracking). Neurophysiological records from 35 participants were exposed to 8 relevant TV Super Bowl commercials. Correlations between neurophysiological-based metrics, ad recall, ad liking, the ACE metrix score and the number of views on YouTube during a year were investigated. Our findings suggest a significant correlation between neuroscience metrics and self-reported of ad effectiveness and the direct number of views on the YouTube channel. In add…

EXPRESION GRAFICA EN LA INGENIERIAlcsh:BF1-990Internet privacyNeuromarketingContext (language use)eye trackingCorrelation03 medical and health sciences0302 clinical medicineTEORIA DE LA SEÑAL Y COMUNICACIONES0502 economics and businessPsychologyNeuromarketingBrain responseHeart rate variabilityGeneral PsychologyOriginal ResearchEye trackingArtificial neural networksArtificial neural networkRecallbusiness.industryYouTube05 social sciencesheart rate variabilityOnline advertisinglcsh:Psychologybrain responseEye tracking050211 marketingneuromarketingbusinessPsychologyConsumer neuroscienceartificial neural networks030217 neurology & neurosurgeryCognitive psychologyFrontiers in Psychology
researchProduct

An Embedded Fingerprints Classification System based on Weightless Neural Networks

2009

Automatic fingerprint classification provides an important indexing scheme to facilitate efficient matching in large-scale fingerprint databases in Automatic Fingerprint Identification Systems (AFISs). The paper presents a new fast fingerprint classification module implementing on embedded Weightless Neural Network (RAM-based neural network). The proposed WNN architecture uses directional maps to classify fingerprint images in the five NIST classes (Left Loop, Right Loop, Whorl, Arch and Tented Arch) without anyone enhancement phase. Starting from the directional map, the WNN architecture computes the fingerprint classification rate. The proposed architecture is implemented on Celoxica RC20…

Embedded Fingerprint Classification Weightless Neural Network RAM based Neural Networks Directional Map FPGA.
researchProduct