Search results for " Nonlinear"

showing 10 items of 1224 documents

Considerations on super Poincare algebras and their extensions to simple superalgebras

2001

We consider simple superalgebras which are a supersymmetric extension of $\fspin(s,t)$ in the cases where the number of odd generators does not exceed 64. All of them contain a super Poincar\'e algebra as a contraction and another as a subalgebra. Because of the contraction property, some of these algebras can be interpreted as de Sitter or anti de Sitter superalgebras. However, the number of odd generators present in the contraction is not always minimal due to the different splitting properties of the spinor representations under a subalgebra. We consider the general case, with arbitrary dimension and signature, and examine in detail particular examples with physical implications in dimen…

High Energy Physics - TheoryPhysicsPure mathematicsSpinorSubalgebraFOS: Physical sciencesFísicaStatistical and Nonlinear Physicssymbols.namesakeHigh Energy Physics - Theory (hep-th)De Sitter universePoincaré conjecturesymbolsAnti-de Sitter spaceContraction (operator theory)Mathematical PhysicsParticle Physics - Theory
researchProduct

SPECTRAL GEOMETRY OF SPACETIME

2000

Spacetime, understood as a globally hyperbolic manifold, may be characterized by spectral data using a 3+1 splitting into space and time, a description of space by spectral triples and by employing causal relationships, as proposed earlier. Here, it is proposed to use the Hadamard condition of quantum field theory as a smoothness principle.

High Energy Physics - TheoryPhysicsSmoothness (probability theory)Spacetime010308 nuclear & particles physics010102 general mathematicsMathematical analysisFOS: Physical sciencesSpectral geometryStatistical and Nonlinear Physics16. Peace & justiceCondensed Matter PhysicsSpace (mathematics)01 natural sciencesHigh Energy Physics - Theory (hep-th)Hadamard transform0103 physical sciencesGlobally hyperbolic manifold0101 mathematicsQuantum field theorySpectral dataInternational Journal of Modern Physics B
researchProduct

The kite integral to all orders in terms of elliptic polylogarithms

2016

We show that the Laurent series of the two-loop kite integral in $D=4-2\varepsilon$ space-time dimensions can be expressed in each order of the series expansion in terms of elliptic generalisations of (multiple) polylogarithms. Using differential equations we present an iterative method to compute any desired order. As an example, we give the first three orders explicitly.

High Energy Physics - TheoryPure mathematics010308 nuclear & particles physicsIterative methodDifferential equationNumerical analysisLaurent seriesOrder (ring theory)FOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Kite0103 physical sciencesBoundary value problem010306 general physicsSeries expansionMathematical PhysicsMathematics
researchProduct

Contractions of Filippov algebras

2010

We introduce in this paper the contractions $\mathfrak{G}_c$ of $n$-Lie (or Filippov) algebras $\mathfrak{G}$ and show that they have a semidirect structure as their $n=2$ Lie algebra counterparts. As an example, we compute the non-trivial contractions of the simple $A_{n+1}$ Filippov algebras. By using the \.In\"on\"u-Wigner and the generalized Weimar-Woods contractions of ordinary Lie algebras, we compare (in the $\mathfrak{G}=A_{n+1}$ simple case) the Lie algebras Lie$\,\mathfrak{G}_c$ (the Lie algebra of inner endomorphisms of $\mathfrak{G}_c$) with certain contractions $(\mathrm{Lie}\,\mathfrak{G})_{IW}$ and $(\mathrm{Lie}\,\mathfrak{G})_{W-W}$ of the Lie algebra Lie$\,\mathfrak{G}$ as…

High Energy Physics - TheoryPure mathematicsEndomorphismStructure (category theory)FOS: Physical sciencesStatistical and Nonlinear PhysicsMathematics - Rings and AlgebrasMathematical Physics (math-ph)High Energy Physics - Theory (hep-th)Simple (abstract algebra)Rings and Algebras (math.RA)Mathematics - Quantum AlgebraLie algebraFOS: MathematicsQuantum Algebra (math.QA)Mathematics::Representation TheoryMathematical PhysicsMathematics
researchProduct

The Minkowski and conformal superspaces

2006

We define complex Minkowski superspace in 4 dimensions as the big cell inside a complex flag supermanifold. The complex conformal supergroup acts naturally on this super flag, allowing us to interpret it as the conformal compactification of complex Minkowski superspace. We then consider real Minkowski superspace as a suitable real form of the complex version. Our methods are group theoretic, based on the real conformal supergroup and its Lie superalgebra.

High Energy Physics - TheoryPure mathematicsFOS: Physical sciencesReal formFísicaStatistical and Nonlinear PhysicsConformal mapLie superalgebraMathematical Physics (math-ph)Mathematics - Rings and AlgebrasSuperspaceHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Rings and Algebras (math.RA)Mathematics::Quantum AlgebraMinkowski spaceSupermanifoldFOS: MathematicsCompactification (mathematics)Mathematics::Representation TheorySupergroupMathematical PhysicsMathematics
researchProduct

Central extensions of the families of quasi-unitary Lie algebras

1998

The most general possible central extensions of two whole families of Lie algebras, which can be obtained by contracting the special pseudo-unitary algebras su(p,q) of the Cartan series A_l and the pseudo-unitary algebras u(p,q), are completely determined and classified for arbitrary p,q. In addition to the su(p,q) and u({p,q}) algebras, whose second cohomology group is well known to be trivial, each family includes many non-semisimple algebras; their central extensions, which are explicitly given, can be classified into three types as far as their properties under contraction are involved. A closed expression for the dimension of the second cohomology group of any member of these families …

High Energy Physics - TheoryPure mathematicsGeneral Physics and AstronomyClosed expressionFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Unitary stateCohomologyHigh Energy Physics - Theory (hep-th)Mathematics - Quantum AlgebraLie algebraFOS: MathematicsQuantum Algebra (math.QA)Contraction (operator theory)Mathematical PhysicsMathematics
researchProduct

Higher genera Catalan numbers and Hirota equations for extended nonlinear Schrödinger hierarchy

2021

We consider the Dubrovin--Frobenius manifold of rank $2$ whose genus expansion at a special point controls the enumeration of a higher genera generalization of the Catalan numbers, or, equivalently, the enumeration of maps on surfaces, ribbon graphs, Grothendieck's dessins d'enfants, strictly monotone Hurwitz numbers, or lattice points in the moduli spaces of curves. Liu, Zhang, and Zhou conjectured that the full partition function of this Dubrovin--Frobenius manifold is a tau-function of the extended nonlinear Schr\"odinger hierarchy, an extension of a particular rational reduction of the Kadomtsev--Petviashvili hierarchy. We prove a version of their conjecture specializing the Givental--M…

High Energy Physics - TheoryPure mathematicsRank (linear algebra)FOS: Physical sciences[MATH] Mathematics [math]01 natural sciencesCatalan numberMathematics::Algebraic Geometry[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]KP hierarchy0103 physical sciences[NLIN] Nonlinear Sciences [physics][NLIN]Nonlinear Sciences [physics][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]0101 mathematics[MATH]Mathematics [math]Mathematics::Symplectic GeometryMathematical PhysicsMathematicsHirota equationsPartition function (quantum field theory)ConjectureNonlinear Sciences - Exactly Solvable and Integrable SystemsHierarchy (mathematics)010102 general mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Statistical and Nonlinear PhysicsMathematical Physics (math-ph)16. Peace & justiceLax equationsManifoldModuli spaceMonotone polygonNonlinear Sciences::Exactly Solvable and Integrable SystemsHigh Energy Physics - Theory (hep-th)010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Exactly Solvable and Integrable Systems (nlin.SI)Catalan numbersFrobenius manifoldsLetters in Mathematical Physics
researchProduct

On the computation of intersection numbers for twisted cocycles

2020

Intersection numbers of twisted cocycles arise in mathematics in the field of algebraic geometry. Quite recently, they appeared in physics: Intersection numbers of twisted cocycles define a scalar product on the vector space of Feynman integrals. With this application, the practical and efficient computation of intersection numbers of twisted cocycles becomes a topic of interest. An existing algorithm for the computation of intersection numbers of twisted cocycles requires in intermediate steps the introduction of algebraic extensions (for example square roots), although the final result may be expressed without algebraic extensions. In this article I present an improvement of this algorith…

High Energy Physics - TheoryPure mathematicsScalar (mathematics)FOS: Physical sciencesStatistical and Nonlinear PhysicsField (mathematics)Mathematical Physics (math-ph)Algebraic geometryHigh Energy Physics - PhenomenologyMathematics - Algebraic GeometryHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Square rootIntersectionProduct (mathematics)ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONFOS: MathematicsAlgebraic numberAlgebraic Geometry (math.AG)Mathematical PhysicsVector space
researchProduct

Entanglement in continuous-variable systems: recent advances and current perspectives

2007

We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures, and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillabil…

High Energy Physics - TheoryStatistics and ProbabilityINFORMATIONField (physics)Computer scienceGaussianStructure (category theory)FOS: Physical sciencesGeneral Physics and AstronomyQuantum entanglementMultipartite entanglementUnitary statesymbols.namesakeRADIATION-FIELDSEPARABILITY CRITERIONStatistical physicsQuantum informationNORMAL FORMSCondensed Matter - Statistical MechanicsMathematical PhysicsQuantum opticsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)ERROR-CORRECTIONENTROPYStatistical and Nonlinear PhysicsQUANTUM TELEPORTATION NETWORK MIXED-STATE ENTANGLEMENT GAUSSIAN STATES SEPARABILITY CRITERION ERROR-CORRECTION RADIATION-FIELD NORMAL FORMS INEQUALITIES INFORMATION ENTROPYMathematical Physics (math-ph)Quantum PhysicsMIXED-STATE ENTANGLEMENTGAUSSIAN STATESHigh Energy Physics - Theory (hep-th)QUANTUM TELEPORTATION NETWORKModeling and SimulationINEQUALITIESsymbolsQuantum Physics (quant-ph)Physics - OpticsOptics (physics.optics)
researchProduct

SOV approach for integrable quantum models associated to general representations on spin-1/2 chains of the 8-vertex reflection algebra

2013

The analysis of the transfer matrices associated to the most general representations of the 8-vertex reflection algebra on spin-1/2 chains is here implemented by introducing a quantum separation of variables (SOV) method which generalizes to these integrable quantum models the method first introduced by Sklyanin. More in detail, for the representations reproducing in their homogeneous limits the open XYZ spin-1/2 quantum chains with the most general integrable boundary conditions, we explicitly construct representations of the 8-vertex reflection algebras for which the transfer matrix spectral problem is separated. Then, in these SOV representations we get the complete characterization of t…

High Energy Physics - TheoryStatistics and ProbabilityNonlinear Sciences - Exactly Solvable and Integrable SystemsIntegrable systemSpectrum (functional analysis)General Physics and AstronomyFOS: Physical sciencesStatistical and Nonlinear PhysicsBasis (universal algebra)Mathematical Physics (math-ph)16. Peace & justiceTransfer matrixAlgebraMatrix (mathematics)Reflection (mathematics)High Energy Physics - Theory (hep-th)Modeling and SimulationAlgebra representationExactly Solvable and Integrable Systems (nlin.SI)Mathematical PhysicsEigenvalues and eigenvectorsMathematics
researchProduct