6533b82afe1ef96bd128c2c0

RESEARCH PRODUCT

Contractions of Filippov algebras

José A. De AzcárragaMoisés PicónJosé M. Izquierdo

subject

High Energy Physics - TheoryPure mathematicsEndomorphismStructure (category theory)FOS: Physical sciencesStatistical and Nonlinear PhysicsMathematics - Rings and AlgebrasMathematical Physics (math-ph)High Energy Physics - Theory (hep-th)Simple (abstract algebra)Rings and Algebras (math.RA)Mathematics - Quantum AlgebraLie algebraFOS: MathematicsQuantum Algebra (math.QA)Mathematics::Representation TheoryMathematical PhysicsMathematics

description

We introduce in this paper the contractions $\mathfrak{G}_c$ of $n$-Lie (or Filippov) algebras $\mathfrak{G}$ and show that they have a semidirect structure as their $n=2$ Lie algebra counterparts. As an example, we compute the non-trivial contractions of the simple $A_{n+1}$ Filippov algebras. By using the \.In\"on\"u-Wigner and the generalized Weimar-Woods contractions of ordinary Lie algebras, we compare (in the $\mathfrak{G}=A_{n+1}$ simple case) the Lie algebras Lie$\,\mathfrak{G}_c$ (the Lie algebra of inner endomorphisms of $\mathfrak{G}_c$) with certain contractions $(\mathrm{Lie}\,\mathfrak{G})_{IW}$ and $(\mathrm{Lie}\,\mathfrak{G})_{W-W}$ of the Lie algebra Lie$\,\mathfrak{G}$ associated with $\mathfrak{G}$.

https://dx.doi.org/10.48550/arxiv.1009.0372