Search results for " Pd"
showing 10 items of 651 documents
$n$-harmonic coordinates and the regularity of conformal mappings
2014
This article studies the smoothness of conformal mappings between two Riemannian manifolds whose metric tensors have limited regularity. We show that any bi-Lipschitz conformal mapping or $1$-quasiregular mapping between two manifolds with $C^r$ metric tensors ($r > 1$) is a $C^{r+1}$ conformal (local) diffeomorphism. This result was proved in [12, 27, 33], but we give a new proof of this fact. The proof is based on $n$-harmonic coordinates, a generalization of the standard harmonic coordinates that is particularly suited to studying conformal mappings. We establish the existence of a $p$-harmonic coordinate system for $1 < p < \infty$ on any Riemannian manifold.
Conformality and $Q$-harmonicity in sub-Riemannian manifolds
2016
We prove the equivalence of several natural notions of conformal maps between sub-Riemannian manifolds. Our main contribution is in the setting of those manifolds that support a suitable regularity theory for subelliptic $p$-Laplacian operators. For such manifolds we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth. In particular, we prove that contact manifolds support the suitable regularity. The main new technical tools are a sub-Riemannian version of p-harmonic coordinates and a technique of propagation of regularity from horizontal layers.
The boundary Harnack inequality for infinity harmonic functions in Lipschitz domains satisfying the interior ball condition
2008
Abstract In this note, we give a short proof for the boundary Harnack inequality for infinity harmonic functions in a Lipschitz domain satisfying the interior ball condition. Our argument relies on the use of quasiminima and the notion of comparison with cones.
Spatially localized solutions of the Hammerstein equation with sigmoid type of nonlinearity
2016
Abstract We study the existence of fixed points to a parameterized Hammerstein operator H β , β ∈ ( 0 , ∞ ] , with sigmoid type of nonlinearity. The parameter β ∞ indicates the steepness of the slope of a nonlinear smooth sigmoid function and the limit case β = ∞ corresponds to a discontinuous unit step function. We prove that spatially localized solutions to the fixed point problem for large β exist and can be approximated by the fixed points of H ∞ . These results are of a high importance in biological applications where one often approximates the smooth sigmoid by discontinuous unit step function. Moreover, in order to achieve even better approximation than a solution of the limit proble…
A radiation condition for the 2-D Helmholtz equation in stratified media
2009
We study the 2-D Helmholtz equation in perturbed stratified media, allowing the existence of guided waves. Our assumptions on the perturbing and source terms are not too restrictive. We prove two results. Firstly, we introduce a Sommerfeld-Rellich radiation condition and prove the uniqueness of the solution for the studied equation. Then, by careful asymptotic estimates, we prove the existence of a bounded solution satisfying our radiation condition.
Monotonicity and local uniqueness for the Helmholtz equation
2017
This work extends monotonicity-based methods in inverse problems to the case of the Helmholtz (or stationary Schr\"odinger) equation $(\Delta + k^2 q) u = 0$ in a bounded domain for fixed non-resonance frequency $k>0$ and real-valued scattering coefficient function $q$. We show a monotonicity relation between the scattering coefficient $q$ and the local Neumann-Dirichlet operator that holds up to finitely many eigenvalues. Combining this with the method of localized potentials, or Runge approximation, adapted to the case where finitely many constraints are present, we derive a constructive monotonicity-based characterization of scatterers from partial boundary data. We also obtain the local…
Dimension bounds in monotonicity methods for the Helmholtz equation
2019
The article [B. Harrach, V. Pohjola, and M. Salo, Anal. PDE] established a monotonicity inequality for the Helmholtz equation and presented applications to shape detection and local uniqueness in inverse boundary problems. The monotonicity inequality states that if two scattering coefficients satisfy $q_1 \leq q_2$, then the corresponding Neumann-to-Dirichlet operators satisfy $\Lambda(q_1) \leq \Lambda(q_2)$ up to a finite-dimensional subspace. Here we improve the bounds for the dimension of this space. In particular, if $q_1$ and $q_2$ have the same number of positive Neumann eigenvalues, then the finite-dimensional space is trivial. peerReviewed
An optimal Poincaré-Wirtinger inequality in Gauss space
2013
International audience; Let $\Omega$ be a smooth, convex, unbounded domain of $\mathbb{R}^N$. Denote by $\mu_1(\Omega)$ the first nontrivial Neumann eigenvalue of the Hermite operator in $\Omega$; we prove that $\mu_1(\Omega) \ge 1$. The result is sharp since equality sign is achieved when $\Omega$ is a $N$-dimensional strip. Our estimate can be equivalently viewed as an optimal Poincaré-Wirtinger inequality for functions belonging to the weighted Sobolev space $H^1(\Omega,d\gamma_N)$, where $\gamma_N$ is the $N$% -dimensional Gaussian measure.
A sharp lower bound for some neumann eigenvalues of the hermite operator
2013
This paper deals with the Neumann eigenvalue problem for the Hermite operator defined in a convex, possibly unbounded, planar domain $\Omega$, having one axis of symmetry passing through the origin. We prove a sharp lower bound for the first eigenvalue $\mu_1^{odd}(\Omega)$ with an associated eigenfunction odd with respect to the axis of symmetry. Such an estimate involves the first eigenvalue of the corresponding one-dimensional problem. As an immediate consequence, in the class of domains for which $\mu_1(\Omega)=\mu_1^{odd}(\Omega)$, we get an explicit lower bound for the difference between $\mu(\Omega)$ and the first Neumann eigenvalue of any strip.
Serrin-Type Overdetermined Problems: an Alternative Proof
2008
We prove the symmetry of solutions to overdetermined problems for a class of fully nonlinear equations, namely the Hessian equations. In the case of the Poisson equation, our proof is alternative to the proofs proposed by Serrin (moving planes) and by Weinberger. Moreover, our proof makes no direct use of the maximum principle while it sheds light on a relation between the Serrin problem and the isoperimetric inequality.