Search results for " Physical and theoretical"
showing 9 items of 49 documents
Cost-Effective Treatment of Scalar Relativistic Effects for Multireference Systems: A CASSCF Implementation Based on the Spin-free Dirac-Coulomb Hami…
2016
We present an implementation of the complete active space-self-consistent field (CASSCF) method specifically designed to be used in four-component scalar relativistic calculations based on the spin-free Dirac-Coulomb (SFDC) Hamiltonian. Our implementation takes full advantage of the properties of the SFDC Hamiltonian that allow us to use real algebra and to exploit point-group and spin symmetry to their full extent while including in a rigorous way scalar relativistic effects in the treatment. The SFDC-CASSCF treatment is more expensive than its non-relativistic counterpart only in the orbital optimization step, while exhibiting the same computational cost for the rate-determining full conf…
Nearly-integrable dissipative systems and celestial mechanics
2010
The influence of dissipative effects on classical dynamical models of Celestial Mechanics is of basic importance. We introduce the reader to the subject, giving classical examples found in the literature, like the standard map, the Hénon map, the logistic mapping. In the framework of the dissipative standard map, we investigate the existence of periodic orbits as a function of the parameters. We also provide some techniques to compute the breakdown threshold of quasi-periodic attractors. Next, we review a simple model of Celestial Mechanics, known as the spin-orbit problem which is closely linked to the dissipative standard map. In this context we present the conservative and dissipative KA…
SrTiO 3 -based perovskites: Preparation, characterization and photocatalytic activity in gas–solid regime under simulated solar irradiation
2015
Strontium titanate-based perovskites have been prepared in the presence of Y and Co with the aim to substitute Sr and Ti, respectively, in the ST crystalline structure. The obtained samples have been characterized by XRD, Raman spectroscopy, FE-SEM, XPS and tested as photocatalysts in two gas-solid regime reactions: (i) 2-propanol complete mineralization and (ii) propene partial oxidation, using a system simulating solar irradiation. All the tested samples resulted active as photocatalysts but with significant differences. The lattice substitution of Sr by Y displays a beneficial effect on the 2-propanol photodegradation. Conversely, the partial presence of cobalt on the ST surface, as Co-o…
Hydrogen bonding patterns of 7,9-dimethylguanine and its transplatinum(II) complexes
2002
Methylation at the N7 position is one of the most frequently naturally occurring modifications of guanosine. This alteration drastically changes the hydrogen bonding and acid–base properties of the guanine nucleobase. Here we show on the example of the model nucleobase 7,9-dimethylguanine that due to blockage of N7 of the purine ring, new hydrogen bonding patterns occur on the minor groove binding face of this nucleobase involving the ring nitrogen N3 and the exocyclic amino group N2H2. The free 7,9-dimethylguaninium ion and several transplatinum(II) complexes of the this ligand are presented and discussed. Methylation at N7 drastically changes the acid–base and hydrogen bonding properties …
Quantifying sensitivity and uncertainty analysis of a new mathematical model for the evaluation of greenhouse gas emissions from membrane bioreactors
2015
Abstract A new mathematical model able to quantify greenhouse gas (GHG) emissions in terms of carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) for a Membrane Bioreactor (MBR) is presented. The proposed mathematical model is of the Activated Sludge Model (ASM) family and takes into account simultaneously both biological and physical processes (e.g., membrane fouling). An analysis of the key factors and sources of uncertainty influencing GHG emissions is also presented. Specifically, the standardized regression coefficient, the Extended-FAST and a Monte Carlo based method are employed for assessing model factors which influence three performance indicators: effluent quality index, operational…
Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines
2016
Abstract This work reports experimental data collected for the first time on a full-scale RED pilot plant operated with natural streams in a real environment. The plant – located in the South of Italy – represents the final accomplishment of the REAPower project ( www.reapower.eu ). A RED unit equipped with almost 50 m2 of IEMs (125 cell pairs, 44x44 cm2) was tested, using both artificial and natural feed solutions, these latter corresponding to brackish water (≈0.03 M NaClequivalent) and saturated brine (4–5 M NaClequivalent). A power output up to around 40 W (i.e. 1.6 W/m2 of cell pair) was reached using natural solutions, while an increase of 60% was observed when testing the system with…
Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines
2017
Abstract Reverse electrodialysis (RED) is a promising technology to extract energy from salinity gradients, especially in the areas where concentrated brine and saline waters are available as feed streams. A first pilot-scale plant was recently built in Trapani (Italy), and tested with real brackish water and brine from saltworks. The present work focuses on the scale-up of the pilot plant, reaching more than 400 m 2 of total membrane area installed and representing the largest operating RED plant so far reported in the literature. With a nominal power capacity of 1 kW, the pilot plant reached almost 700 W of power capacity using artificial brine and brackish water, while a 50% decrease in …
Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study
2016
Abstract In reverse electrodialysis (RED) concentration polarization phenomena and pressure drop affect strongly the power output obtainable; therefore the channel geometry has a crucial impact on the system optimization. Both overlapped and woven spacers are commonly commercialised and adopted for RED experiments; the latter exhibit some potential advantages, such as better mixing and lower shadow effect, but they have been poorly investigated in the literature so far. In this work, computational fluid dynamics was used to predict fluid flow and mass transfer in spacer-filled channels for RED applications. A parametric analysis for different spacer geometries was carried out: woven (w) and…
Internally Contracted Multireference Coupled Cluster Calculations with a Spin-Free Dirac-Coulomb Hamiltonian: Application to the Monoxides of Titaniu…
2017
We combine internally contracted multireference coupled cluster theory with a four-component treatment of scalar-relativistic effects based on the spin-free Dirac–Coulomb Hamiltonian. This strategy allows for a rigorous treatment of static and dynamic correlation as well as scalar-relativistic effects, which makes it viable to describe molecules containing heavy transition elements. The use of a spin-free formalism limits the impact of the four-component treatment on the computational cost to the non-rate-determining steps of the calculations. We apply the newly developed method to the lowest singlet and triplet states of the monoxides of titanium, zirconium, and hafnium and show how the in…