Search results for " Standard error"

showing 8 items of 18 documents

Individual and population-level responses to ocean acidification

2016

Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the pr…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesSalinityinorganicBottles or small containers/Aquaria (<20 L)AlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateRespiration rate oxygenBottles or small containers Aquaria 20 LAlkalinity totalSalinity standard errortotalCO2 ventpHRespirationTemperaturedissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Field experimentstandard errorCarbon inorganic dissolved standard errorRespiration rateEarth System ResearchSexUniform resource locator link to referencePotentiometric titrationCalcite saturation stateDry masswaterSiteHexaplex trunculusBenthosAlkalinity total standard errorUniform resource locator/link to referenceOcean Acidification International Coordination Centre OA ICCMediterranean SeaAnimaliaTypeBicarbonate ionTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciesWet massBottles or small containers/Aquaria (&lt;20 L)Calculated using CO2SYSCarbonate system computation flagFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonBiomass/Abundance/Elemental compositionTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaSingle speciesFugacity of carbon dioxide water at sea surface temperature wet airBenthic animalsBiomass Abundance Elemental compositionCoast and continental shelfoxygen
researchProduct

Macroalgal responses to ocean acidification depend on nutrient and light levels

2015

Ocean acidification may benefit algae that are able to capitalize on increased carbon availability for photosynthesis, but it is expected to have adverse effects on calcified algae through dissolution. Shifts in dominance between primary producers will have knock-on effects on marine ecosystems and will likely vary regionally, depending on factors such as irradiance (light vs. shade) and nutrient levels (oligotrophic vs. eutrophic). Thus experiments are needed to evaluate interactive effects of combined stressors in the field. In this study, we investigated the physiological responses of macroalgae near a CO2 seep in oligotrophic waters off Vulcano (Italy). The algae were incubated in situ …

Ocean Acidification International Coordination Centre (OA-ICC)TemperateSalinityChlorophyll aFucoxanthininorganicAlkalinityPhotosynthetic efficiency standard errorChlorophyll cNitrogen content per dry mass standard errorLight saturation point standard errorPhenolics allTemperature waterCarbon inorganic dissolvedMacroalgaeCalculated using seacarb after Nisumaa et al 2010Carbon Nitrogen ratioAragonite saturation stateAlkalinity totalallCarbon per dry massSalinity standard errortotalCarbon content per dry mass standard errorPhenolics all standard errorCO2 ventChromistapHMaximum photochemical quantum yield of photosystem II standard errorTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedAntioxidant activity standard errorCarbonate ionMaximum photochemical quantum yield of photosystem IIPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Field experimentstandard errorNitrogen content per dry massElectron transport rate standard errorFucoxanthin standard errorEarth System ResearchViolaxanthinPhenolicsChlorophyll a standard errorCarbon dioxide standard errorPotentiometric titrationCalcite saturation stateCarbon/Nitrogen ratio standard errorNitrogenOchrophytaPotentiometricper dry masswaterChlorophyll c standard errorBenthosAlkalinity total standard errorAntioxidant activityElectron transport rateLight saturation pointOcean Acidification International Coordination Centre OA ICCMacro-nutrientsMediterranean SeaNitrogen per dry massBicarbonate ionTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)Primary production PhotosynthesisSpeciespH standard errorCalcite saturation state standard errorCystoseira compressaCalculated using CO2SYSNon photochemical quenchingCarbon content per dry massCarbonate system computation flagViolaxanthin standard errorPrimary production/PhotosynthesisFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonCarbon/Nitrogen ratioBiomass/Abundance/Elemental compositionTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airAragonite saturation state standard errorCarbon dioxideMacro nutrientsCarbonate ion standard errorSingle speciesFugacity of carbon dioxide water at sea surface temperature wet airPadina pavonicaBiomass Abundance Elemental compositionCoast and continental shelfPhotosynthetic efficiencyBicarbonate ion standard errorNon photochemical quenching standard error
researchProduct

Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent

2014

We examined the long-term effect of naturally acidified water on a Cymodocea nodosa meadow growing at a shallow volcanic CO2 vent in Vulcano Island (Italy). Seagrass and adjacent unvegetated habitats growing at a low pH station (pH = 7.65 ± 0.02) were compared with corresponding habitats at a control station (pH = 8.01 ± 0.01). Density and biomass showed a clear decreasing trend at the low pH station and the below- to above-ground biomass ratio was more than 10 times lower compared to the control. C content and delta 13C of leaves and epiphytes were significantly lower at the low pH station. Photosynthetic activity of C. nodosa was stimulated by low pH as seen by the significant increase in…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateSalinityChlorophyll ainorganicAlkalinityLight saturation point standard errorPhotosynthetic quantum efficiencyMediterranean Sea Acidification in a Changing Climate MedSeATemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010IrradianceRespiration rate carbonAragonite saturation stateBiomassAlkalinity totalIrradiance standard errortotalCO2 ventCymodocea nodosapHRespirationEpiphytes loadMaximum photochemical quantum yield of photosystem II standard errorNet community production of carbonTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedRespiration rate carbon standard errorCarbonate ionMaximum photochemical quantum yield of photosystem IIPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Net community production of carbon standard errorIlluminance standard errorSoft bottom communitystandard errorCarbon inorganic dissolved standard errorRespiration rateElectron transport rate standard errorEarth System Researchδ13CPhotosynthetic quantum efficiency standard errorField observationChlorophyll a standard errorGross primary production of carbonBiomass standard errorCalcium carbonatePotentiometric titrationCalcite saturation stateShoot densityPotentiometricwaterIlluminanceOxygen standard errorBenthosAlkalinity total standard errorMediterranean Sea Acidification in a Changing Climate (MedSeA)Electron transport rateLight saturation pointOcean Acidification International Coordination Centre OA ICCMediterranean SeaGross primary production of carbon standard errorBicarbonate ionSoft-bottom communityδ13C standard errorTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)Primary production PhotosynthesisSpeciespH standard errorCarbonate system computation flagloadPrimary production/PhotosynthesisFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonBiomass/Abundance/Elemental compositionTreatmentEpiphytes load standard errorOxygenPartial pressure of carbon dioxide water at sea surface temperature wet airEpiphytes loadCarbon dioxideCarbon standard errorEntire communityFugacity of carbon dioxide water at sea surface temperature wet airGroupBiomass Abundance Elemental compositionCoast and continental shelfEpiphytesShoot density standard errorCalcium carbonate standard error
researchProduct

Seawater carbonate chemistry and coralline algal diversity

2021

Calcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary history and …

Ocean Acidification International Coordination Centre (OA-ICC)TemperateSalinityCommunity composition and diversityBicarbonate ion standard deviationinorganicAlkalinity total standard deviationAlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateNorth PacificMarine habitatAlkalinity totaltotalCO2 ventpHTemperaturedissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Calcium carbonate standard deviationstandard errorEarth System Researchstandard deviationField observationCalcium carbonateCoverageCalcite saturation stateLocationwaterPartial pressure of carbon dioxideSiteRocky-shore communityCalcium carbonate massAragonite saturation state standard deviationBenthosSalinity standard deviationOcean Acidification International Coordination Centre OA ICCMediterranean SeaCarbon inorganic dissolved standard deviationCalcite saturation state standard deviationTypeBicarbonate ionCalculated using seacarb after Nisumaa et al. (2010)Coverage standard errorfungiEvent labelPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationCarbonate ion standard deviationFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideRocky shore communityEntire communityFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelfSpecies richness
researchProduct

Vasoactive peptide urotensin II in plasma is associated with cerebral vasospasm after aneurysmal subarachnoid hemorrhage and constitutes a potential …

2019

National audience; OBJECTIVECerebral vasospasm (VS) is a severe complication of aneurysmal subarachnoid hemorrhage (SAH). Urotensin II (UII) is a potent vasoactive peptide activating the urotensin (UT) receptor, potentially involved in brain vascular pathologies. The authors hypothesized that UII/UT system antagonism with the UT receptor antagonist/biased ligand urantide may be associated with post-SAH VS. The objectives of this study were 2-fold: 1) to leverage an experimental mouse model of SAH with VS in order to study the effect of urotensinergic system antagonism on neurological outcome, and 2) to investigate the association between plasma UII level and symptomatic VS after SAH in huma…

SAPS II = Simplified Acute Physiology Score IIMCA = middle cerebral arteryAUC = area under the curvesubarachnoid hemorrhage[SDV]Life Sciences [q-bio]ICU = intensive care unitUT = urotensin (receptor)vascular disordersintensive care unitUII = urotensin IIcardiovascular diseaseshumanmouseWFNS = World Federation of Neurosurgical SocietiesEVD = external ventricular drainageACA = anterior cerebral arteryurotensin IInervous system diseasesSAH = subarachnoid hemorrhageSE = standard errorROC = receiver operating characteristic[SDV] Life Sciences [q-bio]cerebral vasospasmVS = vasospasmDCI = delayed cerebral ischemiaCSF = cerebrospinal fluidIRB = institutional review boardmRS = modified Rankin ScaleIQR = interquartile range
researchProduct

(Table 1) Age determination of sediment profile SO90-41KL/63KA

2002

The 14C ages of planktonic foraminifers Globigerinoides sacculifer bracketing the Younger Dryas in a d18O record of Globigerinoides ruber from a laminated sediment core on the Pakistani continental margin suggest that surface reservoir ages in the Arabian Sea were in excess of 1000 years during the deglaciation. A least squares error fit of a detailed 14C chronology to the (atmospheric) tree ring record gave variable early Holocene reservoir ages between 780 and 1120 years, well above the prebomb value of 640 years. Mid-Holocene reservoir ages are less well constrained but were probably closer to the prebomb value. The method used to fit individual core sections to the tree ring record was …

SO90SectionCalendar ageReservoir age standard errorAge 14C calibratedDEPTH sediment/rockAge commentAge dated materialAge datedSonneAge dated standard deviationReservoir ageAge 14C AMSComposite Core
researchProduct

Effects of ocean acidification on embryonic respiration and development of a temperate wrasse living along a natural CO2 gradient

2016

Volcanic CO2 seeps provide opportunities to investigate the effects of ocean acidification on organisms in the wild. To understand the influence of increasing CO2 concentrations on the metabolic rate (oxygen consumption) and the development of ocellated wrasse early life stages, we ran two field experiments, collecting embryos from nesting sites with different partial pressures of CO2 [pCO2; ambient (400 µatm) and high (800-1000 µatm)] and reciprocally transplanting embryos from ambient- to high-CO2 sites for 30 h. Ocellated wrasse offspring brooded in different CO2 conditions had similar responses, but after transplanting portions of nests to the high-CO2 site, embryos from parents that sp…

StageOcean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesSalinityinorganicYolk area standard errorAlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateRespiration rate oxygenChordataAlkalinity totaltotalCO2 ventpHPelagosReproductionRespirationSymphodus ocellatusTemperatureYolk areadissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Field experimentTemperature water standard deviationTime pointstandard errorRespiration rateEarth System Researchstandard deviationFOS: Medical biotechnologyUniform resource locator link to referenceTime point descriptiveHatchling lengthCalcite saturation statewaterPartial pressure of carbon dioxidedescriptiveGrowth MorphologyFigureUniform resource locator/link to referenceSalinity standard deviationOcean Acidification International Coordination Centre OA ICCMediterranean SeaAnimaliaEggs areaTypeBicarbonate ionNektonEggs area standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciesPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationHatchling length standard errorFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonTreatmentOxygenPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideGrowth/MorphologySingle speciesOxygen standard deviationFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelf
researchProduct

Long-term effectiveness of agalsidase alfa enzyme replacement in Fabry disease: A Fabry Outcome Survey analysis

2015

Outcomes from 5 years of treatment with agalsidase alfa enzyme replacement therapy (ERT) for Fabry disease in patients enrolled in the Fabry Outcome Survey (FOS) were compared with published findings for untreated patients with Fabry disease. Data were extracted from FOS, a Shire-sponsored database, for comparison with data from three published studies. Outcomes evaluated were the annualized rate of change in estimated glomerular filtration rate (eGFR) and left ventricular mass indexed to height (LVMI) as well as time to and ages at a composite morbidity endpoint and at death. FOS data were extracted for 740 treated patients who were followed for a median of ~ 5 years. Compared with no trea…

medicine.medical_specialtyEndocrinology Diabetes and MetabolismUrologyCardiomyopathyRenal functionSE Standard errorLeft ventricular hypertrophyBiochemistryLVH Left ventricular hypertrophyLong-term effectivenessEndocrinologyGeneticsMedicineMDRD Modification of Diet in Renal Diseaselcsh:QH301-705.5Molecular BiologyAgalsidase alfaeGFR Estimated glomerular filtration rateFabry diseaselcsh:R5-920CI Confidence intervalbusiness.industryEnzyme replacement therapymedicine.diseaseEgfr Estimated glomerular filtration rateFabry diseaseSurgeryARB Angiotensin receptor blockerSEM Standard error of the meanStandard errorlcsh:Biology (General)SI:TherapyEnzyme replacement therapyCohortFOS Fabry Outcome SurveyLVMI Left ventricular mass indexed to heightlcsh:Medicine (General)businessACEI Angiotensin-converting enzyme inhibitorAgalsidase alfaERT Enzyme replacement therapyMolecular Genetics and Metabolism Reports
researchProduct